Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Challenges

Post History

77%
+5 −0
Challenges Compute the determinant

CJam, 45 bytes {:A_,{1$_,,.=:+\)/:CAff*A@zf{\f.*::+}..-}/;C} This implementation is an anonymous block (~function). Online test suite. Dissection This implements the Faddeev-LeVerrier algor...

posted 2y ago by Peter Taylor‭  ·  edited 2y ago by Peter Taylor‭

Answer
#2: Post edited by user avatar Peter Taylor‭ · 2021-09-16T07:42:28Z (over 2 years ago)
Improve MathJax formatting
  • # CJam, 45 bytes
  • <!-- language-all: lang-cjam -->
  • {:A_,{1$_,,.=:+\)/:CAff*A@zf{\f.*::+}..-}/;C}
  • This implementation is an anonymous block (~function). [Online test suite](http://cjam.aditsu.net/#code=%7B%3AA_%2C%7B1%24_%2C%2C.%3D%3A%2B%5C\)%2F%3ACAff*A%40zf%7B%5Cf.*%3A%3A%2B%7D..-%7D%2F%3BC%7D%0A%0A%3AD%3B%0A%5B%5B1%200%5D%5B0%201%5D%5D%20Dp%0A%5B%5B1.5%202%5D%5B-3%204.5%5D%5D%20Dp%0A%5B%5B3%207%5D%5B1%20-4%5D%5D%20Dp%0A%5B%5B1%200%200%5D%5B0%201%200%5D%5B0%200%201%5D%5D%20Dp%0A%5B%5B1%202%203%5D%5B4%205%206%5D%5B7%208%209%5D%5D%20Dp).
  • ### Dissection
  • This implements the [Faddeev-LeVerrier algorithm](https://en.wikipedia.org/wiki/Faddeev%E2%80%93LeVerrier_algorithm).
  • The objective is to calculate the coefficients \$c_k\$ of the characteristic polynomial of the \$n\times n\$ matrix \$A\$, $$\begin{eqnarray}p(\lambda)\equiv \det(\lambda I_{n}-A) = \sum_{k=0}^{n}c_{k}\lambda^{k}\end{eqnarray}$$ where, evidently, \$c_n = 1\$ and \$c_0 = (-1)^n \det A\$.
  • The coefficients are determined recursively from the top down, by dint of the auxiliary matrices \$M\$, $$\begin{aligned}M_{0}&\equiv 0&c_{n}&=1\qquad &(k=0)\\\\M_{k}&\equiv AM_{k-1}+c_{n-k+1}I\qquad \qquad &c_{n-k}&=-{\frac {1}{k}}\mathrm {tr} (AM_{k})\qquad &k=1,\ldots ,n~.\end{aligned}$$
  • The code never works directly with \$c_{n-k}\$ and \$M_k\$, but always with \$(-1)^k c_{n-k}\$ and \$(-1)^{k+1}AM_k\$, so the recurrence is $$(-1)^k c_{n-k} = \frac1k \mathrm{tr} ((-1)^{k+1} AM_{k}) \\ (-1)^{k+2} AM_{k+1} = (-1)^k c_{n-k}A - A((-1)^{k+1}A M_k)$$
  • { e# Define a block
  • :A e# Store the input matrix in A
  • _, e# Take the length of a copy
  • { e# for i = 0 to n-1
  • e# Stack: (-1)^{i+2}AM_{i+1} i
  • 1$_,,.=:+ e# Calculate tr((-1)^{i+2}AM_{i+1})
  • \)/:C e# Divide by (i+1) and store in C
  • Aff* e# Multiply by A
  • A@ e# Push a copy of A, bring (-1)^{i+2}AM_{i+1} to the top
  • zf{\f.*::+} e# Matrix multiplication
  • ..- e# Matrix subtraction
  • }/
  • ; e# Pop (-1)^{n+2}AM_{n+1} (which incidentally is 0)
  • C e# Fetch the last stored value of C
  • }
  • # CJam, 45 bytes
  • <!-- language-all: lang-cjam -->
  • {:A_,{1$_,,.=:+\)/:CAff*A@zf{\f.*::+}..-}/;C}
  • This implementation is an anonymous block (~function). [Online test suite](http://cjam.aditsu.net/#code=%7B%3AA_%2C%7B1%24_%2C%2C.%3D%3A%2B%5C\)%2F%3ACAff*A%40zf%7B%5Cf.*%3A%3A%2B%7D..-%7D%2F%3BC%7D%0A%0A%3AD%3B%0A%5B%5B1%200%5D%5B0%201%5D%5D%20Dp%0A%5B%5B1.5%202%5D%5B-3%204.5%5D%5D%20Dp%0A%5B%5B3%207%5D%5B1%20-4%5D%5D%20Dp%0A%5B%5B1%200%200%5D%5B0%201%200%5D%5B0%200%201%5D%5D%20Dp%0A%5B%5B1%202%203%5D%5B4%205%206%5D%5B7%208%209%5D%5D%20Dp).
  • ### Dissection
  • This implements the [Faddeev-LeVerrier algorithm](https://en.wikipedia.org/wiki/Faddeev%E2%80%93LeVerrier_algorithm).
  • The objective is to calculate the coefficients \$c_k\$ of the characteristic polynomial of the \$n\times n\$ matrix \$A\$, $$\begin{eqnarray}p(\lambda)\equiv \det(\lambda I_{n}-A) = \sum_{k=0}^{n}c_{k}\lambda^{k}\end{eqnarray}$$ where, evidently, \$c_n = 1\$ and \$c_0 = (-1)^n \det A\$.
  • The coefficients are determined recursively from the top down, by dint of the auxiliary matrices \$M\$, $$\begin{aligned}M_{0}&\equiv 0&c_{n}&=1\qquad &(k=0)\\\\M_{k}&\equiv AM_{k-1}+c_{n-k+1}I\qquad \qquad &c_{n-k}&=-{\frac {1}{k}}\mathrm {tr} (AM_{k})\qquad &k=1,\ldots ,n~.\end{aligned}$$
  • The code never works directly with \$c_{n-k}\$ and \$M_k\$, but always with \$(-1)^k c_{n-k}\$ and \$(-1)^{k+1}AM_k\$, so the recurrence is $$\begin{eqnarray*}(-1)^k c_{n-k} &=& \frac1k \mathrm{tr} ((-1)^{k+1} AM_{k}) \\\\ (-1)^{k+2} AM_{k+1} &=& (-1)^k c_{n-k}A - A((-1)^{k+1}A M_k)\end{eqnarray*}$$
  • { e# Define a block
  • :A e# Store the input matrix in A
  • _, e# Take the length of a copy
  • { e# for i = 0 to n-1
  • e# Stack: (-1)^{i+2}AM_{i+1} i
  • 1$_,,.=:+ e# Calculate tr((-1)^{i+2}AM_{i+1})
  • \)/:C e# Divide by (i+1) and store in C
  • Aff* e# Multiply by A
  • A@ e# Push a copy of A, bring (-1)^{i+2}AM_{i+1} to the top
  • zf{\f.*::+} e# Matrix multiplication
  • ..- e# Matrix subtraction
  • }/
  • ; e# Pop (-1)^{n+2}AM_{n+1} (which incidentally is 0)
  • C e# Fetch the last stored value of C
  • }
#1: Initial revision by user avatar Peter Taylor‭ · 2021-09-15T17:54:46Z (over 2 years ago)
# CJam, 45 bytes

<!-- language-all: lang-cjam -->

    {:A_,{1$_,,.=:+\)/:CAff*A@zf{\f.*::+}..-}/;C}

This implementation is an anonymous block (~function). [Online test suite](http://cjam.aditsu.net/#code=%7B%3AA_%2C%7B1%24_%2C%2C.%3D%3A%2B%5C\)%2F%3ACAff*A%40zf%7B%5Cf.*%3A%3A%2B%7D..-%7D%2F%3BC%7D%0A%0A%3AD%3B%0A%5B%5B1%200%5D%5B0%201%5D%5D%20Dp%0A%5B%5B1.5%202%5D%5B-3%204.5%5D%5D%20Dp%0A%5B%5B3%207%5D%5B1%20-4%5D%5D%20Dp%0A%5B%5B1%200%200%5D%5B0%201%200%5D%5B0%200%201%5D%5D%20Dp%0A%5B%5B1%202%203%5D%5B4%205%206%5D%5B7%208%209%5D%5D%20Dp).

### Dissection
This implements the [Faddeev-LeVerrier algorithm](https://en.wikipedia.org/wiki/Faddeev%E2%80%93LeVerrier_algorithm).

The objective is to calculate the coefficients \$c_k\$ of the characteristic polynomial of the \$n\times n\$ matrix \$A\$, $$\begin{eqnarray}p(\lambda)\equiv \det(\lambda I_{n}-A) = \sum_{k=0}^{n}c_{k}\lambda^{k}\end{eqnarray}$$ where, evidently, \$c_n = 1\$ and \$c_0 = (-1)^n \det A\$.

The coefficients are determined recursively from the top down, by dint of the auxiliary matrices \$M\$, $$\begin{aligned}M_{0}&\equiv 0&c_{n}&=1\qquad &(k=0)\\\\M_{k}&\equiv AM_{k-1}+c_{n-k+1}I\qquad \qquad &c_{n-k}&=-{\frac {1}{k}}\mathrm {tr} (AM_{k})\qquad &k=1,\ldots ,n~.\end{aligned}$$

The code never works directly with \$c_{n-k}\$ and \$M_k\$, but always with \$(-1)^k c_{n-k}\$ and \$(-1)^{k+1}AM_k\$, so the recurrence is $$(-1)^k c_{n-k} = \frac1k \mathrm{tr} ((-1)^{k+1} AM_{k}) \\ (-1)^{k+2} AM_{k+1} = (-1)^k c_{n-k}A - A((-1)^{k+1}A M_k)$$

    {               e# Define a block
      :A            e#   Store the input matrix in A
      _,            e#   Take the length of a copy
      {             e#     for i = 0 to n-1
                    e#       Stack: (-1)^{i+2}AM_{i+1} i
        1$_,,.=:+   e#       Calculate tr((-1)^{i+2}AM_{i+1})
        \)/:C       e#       Divide by (i+1) and store in C
        Aff*        e#       Multiply by A
        A@          e#       Push a copy of A, bring (-1)^{i+2}AM_{i+1} to the top
        zf{\f.*::+} e#       Matrix multiplication
        ..-         e#       Matrix subtraction
      }/
      ;             e#   Pop (-1)^{n+2}AM_{n+1} (which incidentally is 0)
      C             e#   Fetch the last stored value of C
    }