Post History
#4: Post edited
Holeyest base representation
- Holeyest base representation [FINALIZED]
- Given a positive integer as input, indicate which base from 2 to 16 gives the most holes in the representation of the input in that base.
- The digits used are 0123456789ABCDEF. Note that these include upper case letters (the number of holes would be different for lower case letters).
- Different fonts have different numbers of holes per character, so the number of holes per digit is as follows for this challenge (in the format `digit : number of holes`):
- ```text
- 0 : 1
- 1 : 0
- 2 : 0
- 3 : 0
- 4 : 1
- 5 : 0
- 6 : 1
- 7 : 0
- 8 : 2
- 9 : 1
- A : 1
- B : 2
- C : 0
- D : 1
- E : 0
- F : 0
- ```
- ## Input
- - A positive integer
- ## Output
- - An integer from 2 to 16
- - The output indicates which base gives the representation with the most holes (being the sum of the number of holes in each digit when represented in that base)
- - For the purposes of counting holes:
- - Each representation will have no leading zeroes
- - The base indicator characters used by some languages, such as a leading `0b` or `0x` are not included in the counting
- - If more than one base has the highest number of holes, any such base is a valid output
- ## Example
- For input `123` the representation in each of the bases from 2 to 16, and the associated number of holes, is as follows (in the format `base : representation : holes`):
- ```text
- 2 : 1111011 : 0 + 0 + 0 + 0 + 1 + 0 + 0 = 1
- 3 : 11120 : 0 + 0 + 0 + 0 + 1 = 1
- 4 : 1323 : 0 + 0 + 0 + 0 = 0
- 5 : 443 : 1 + 1 + 0 = 2
- 6 : 323 : 0 + 0 + 0 = 0
- 7 : 234 : 0 + 0 + 1 = 1
- 8 : 173 : 0 + 0 + 0 = 0
- 9 : 146 : 0 + 1 + 1 = 2
- 10 : 123 : 0 + 0 + 0 = 0
- 11 : 102 : 0 + 1 + 0 = 1
- 12 : A3 : 1 + 0 = 1
- 13 : 96 : 1 + 1 = 2
- 14 : 8B : 2 + 2 = 4
- 15 : 83 : 2 + 0 = 2
- 16 : 7B : 0 + 2 = 2
- ```
- The highest number of holes is 4, and this only occurs when the base is 14. So the only valid output is 14.
- ## Test cases
- ### Test cases with only 1 valid output
- These test cases are in the format `input : output`.
- ```text
- 2 : 2
- 3 : 3
- 4 : 2
- 7 : 7
- 8 : 2
- 10 : 2
- 12 : 2
- 16 : 2
- 17 : 2
- 18 : 2
- 20 : 2
- 24 : 2
- 27 : 3
- 32 : 2
- 33 : 2
- 34 : 2
- 35 : 2
- 36 : 2
- 37 : 2
- 38 : 2
- 40 : 2
- 41 : 2
- 42 : 2
- 48 : 2
- 49 : 2
- 50 : 2
- 51 : 2
- 54 : 3
- 59 : 12
- 60 : 13
- 61 : 13
- 62 : 9
- 63 : 13
- 64 : 2
- 65 : 2
- 66 : 2
- 67 : 2
- 68 : 2
- 69 : 2
- 70 : 2
- 72 : 2
- 73 : 2
- 74 : 2
- 76 : 2
- 77 : 2
- 80 : 2
- 82 : 2
- 84 : 2
- 85 : 2
- 87 : 3
- 94 : 11
- 95 : 14
- 96 : 2
- 97 : 2
- 98 : 2
- 123 : 14
- ```
- ### Test cases including some with multiple valid outputs
- These test cases are in the format `input : [comma separated outputs]` where any of the listed outputs would be valid. These also include all of the single valid output test cases listed above.
- ```text
- 0 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 1 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 2 : [2]
- 3 : [3]
- 4 : [2]
- 5 : [2, 5]
- 6 : [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 7 : [7]
- 8 : [2]
- 9 : [2, 3]
- 10 : [2]
- 11 : [12, 13, 14, 15, 16]
- 12 : [2]
- 13 : [2, 7, 9, 13, 14, 15, 16]
- 14 : [2, 5, 7, 8, 10, 14]
- 15 : [3, 5, 9, 11, 15]
- 16 : [2]
- 17 : [2]
- 18 : [2]
- 19 : [2, 11]
- 20 : [2]
- 21 : [2, 13]
- 22 : [2, 14]
- 23 : [12, 15]
- 24 : [2]
- 25 : [2, 5, 14]
- 26 : [2, 9, 15]
- 27 : [3]
- 28 : [2, 3, 6, 7, 10]
- 29 : [3, 5]
- 30 : [3, 11]
- 31 : [3, 7, 9, 11]
- 32 : [2]
- 33 : [2]
- 34 : [2]
- 35 : [2]
- 36 : [2]
- 37 : [2]
- 38 : [2]
- 39 : [2, 14]
- 40 : [2]
- 41 : [2]
- 42 : [2]
- 43 : [2, 16]
- 44 : [2, 9]
- 45 : [2, 3, 5]
- 46 : [2, 7, 10]
- 47 : [12, 13]
- 48 : [2]
- 49 : [2]
- 50 : [2]
- 51 : [2]
- 52 : [2, 11]
- 53 : [2, 7, 9, 11, 14, 15]
- 54 : [3]
- 55 : [3, 7]
- 56 : [2, 12]
- 57 : [2, 3, 12]
- 58 : [2, 9, 10, 12, 13]
- 59 : [12]
- 60 : [13]
- 61 : [13]
- 62 : [9]
- 63 : [13]
- 64 : [2]
- 65 : [2]
- 66 : [2]
- 67 : [2]
- 68 : [2]
- 69 : [2]
- 70 : [2]
- 71 : [2, 15]
- 72 : [2]
- 73 : [2]
- 74 : [2]
- 75 : [2, 16]
- 76 : [2]
- 77 : [2]
- 78 : [2, 9]
- 79 : [2, 5, 9]
- 80 : [2]
- 81 : [2, 3]
- 82 : [2]
- 83 : [2, 3, 12]
- 84 : [2]
- 85 : [2]
- 86 : [2, 10, 13]
- 87 : [3]
- 88 : [2, 10]
- 89 : [2, 9, 10, 13]
- 90 : [2, 3]
- 91 : [2, 3, 7, 11, 16]
- 92 : [2, 11, 14]
- 93 : [2, 3, 11, 14]
- 94 : [11]
- 95 : [14]
- 96 : [2]
- 97 : [2]
- 98 : [2]
- 99 : [2, 3]
- 123 : [14]
- 1200 : [2]
- 1201 : [2]
- 1202 : [2]
- 1203 : [2]
- 1204 : [2]
- 1205 : [2]
- 1206 : [2]
- 1207 : [2, 11]
- 1208 : [2]
- 1209 : [2]
- 1210 : [2]
- 1211 : [12, 16]
- 1212 : [2]
- 1213 : [2, 16]
- 1214 : [2, 9]
- 1215 : [3]
- 1216 : [2]
- 1217 : [2]
- 1218 : [2]
- 1219 : [2]
- 1220 : [2]
- 1221 : [2]
- 1222 : [2]
- 1223 : [2]
- 1224 : [2]
- 1225 : [2]
- 1226 : [2]
- 1227 : [2]
- 1228 : [2]
- 1229 : [2]
- 1230 : [2]
- 1231 : [2]
- 1232 : [2]
- 1233 : [2]
- 1234 : [2]
- 1235 : [2, 12]
- 1236 : [2]
- 1237 : [2]
- 1238 : [2]
- 1239 : [2]
- 1240 : [2]
- 1241 : [2]
- 1242 : [2]
- 1243 : [2, 14, 16]
- 1244 : [2]
- 1245 : [2, 5]
- 1246 : [2]
- 1247 : [12]
- 1248 : [2]
- 1249 : [2]
- 1250 : [2]
- 1251 : [2]
- 1252 : [2]
- 1253 : [2]
- 1254 : [2, 12]
- 1255 : [2, 12]
- 1256 : [2, 12]
- 1257 : [2, 12]
- 1258 : [2, 12]
- 1259 : [12]
- 1260 : [2]
- 1261 : [2]
- 1262 : [2, 11]
- 1263 : [2, 11, 12]
- 1264 : [2]
- 1265 : [2]
- 1266 : [2]
- 1267 : [2]
- 1268 : [2, 12]
- 1269 : [2, 3, 12]
- 1270 : [2, 5, 12]
- 1271 : [12]
- 1272 : [2]
- 1273 : [2]
- 1274 : [2, 5]
- 1275 : [2, 3, 5, 9, 12, 16]
- 1276 : [2, 12]
- 1277 : [9]
- 1278 : [12]
- 1279 : [5, 12]
- 1280 : [2]
- 1281 : [2]
- 1282 : [2]
- 1283 : [2]
- 1284 : [2]
- 1285 : [2]
- 1286 : [2]
- 1287 : [2]
- 1288 : [2]
- 1289 : [2]
- 1290 : [2]
- 1291 : [2]
- 1292 : [2]
- 1293 : [2]
- 1294 : [2]
- 1295 : [12]
- 1296 : [2]
- 1297 : [2]
- 1298 : [2]
- 1299 : [2]
- ```
- > Explanations in answers are optional, but I'm more likely to upvote answers that have one.
- # Now posted: [The holeyest base](https://codegolf.codidact.com/posts/287114)
- ---
- Given a positive integer as input, indicate which base from 2 to 16 gives the most holes in the representation of the input in that base.
- The digits used are 0123456789ABCDEF. Note that these include upper case letters (the number of holes would be different for lower case letters).
- Different fonts have different numbers of holes per character, so the number of holes per digit is as follows for this challenge (in the format `digit : number of holes`):
- ```text
- 0 : 1
- 1 : 0
- 2 : 0
- 3 : 0
- 4 : 1
- 5 : 0
- 6 : 1
- 7 : 0
- 8 : 2
- 9 : 1
- A : 1
- B : 2
- C : 0
- D : 1
- E : 0
- F : 0
- ```
- ## Input
- - A positive integer
- ## Output
- - An integer from 2 to 16
- - The output indicates which base gives the representation with the most holes (being the sum of the number of holes in each digit when represented in that base)
- - For the purposes of counting holes:
- - Each representation will have no leading zeroes
- - The base indicator characters used by some languages, such as a leading `0b` or `0x` are not included in the counting
- - If more than one base has the highest number of holes, any such base is a valid output
- ## Example
- For input `123` the representation in each of the bases from 2 to 16, and the associated number of holes, is as follows (in the format `base : representation : holes`):
- ```text
- 2 : 1111011 : 0 + 0 + 0 + 0 + 1 + 0 + 0 = 1
- 3 : 11120 : 0 + 0 + 0 + 0 + 1 = 1
- 4 : 1323 : 0 + 0 + 0 + 0 = 0
- 5 : 443 : 1 + 1 + 0 = 2
- 6 : 323 : 0 + 0 + 0 = 0
- 7 : 234 : 0 + 0 + 1 = 1
- 8 : 173 : 0 + 0 + 0 = 0
- 9 : 146 : 0 + 1 + 1 = 2
- 10 : 123 : 0 + 0 + 0 = 0
- 11 : 102 : 0 + 1 + 0 = 1
- 12 : A3 : 1 + 0 = 1
- 13 : 96 : 1 + 1 = 2
- 14 : 8B : 2 + 2 = 4
- 15 : 83 : 2 + 0 = 2
- 16 : 7B : 0 + 2 = 2
- ```
- The highest number of holes is 4, and this only occurs when the base is 14. So the only valid output is 14.
- ## Test cases
- ### Test cases with only 1 valid output
- These test cases are in the format `input : output`.
- ```text
- 2 : 2
- 3 : 3
- 4 : 2
- 7 : 7
- 8 : 2
- 10 : 2
- 12 : 2
- 16 : 2
- 17 : 2
- 18 : 2
- 20 : 2
- 24 : 2
- 27 : 3
- 32 : 2
- 33 : 2
- 34 : 2
- 35 : 2
- 36 : 2
- 37 : 2
- 38 : 2
- 40 : 2
- 41 : 2
- 42 : 2
- 48 : 2
- 49 : 2
- 50 : 2
- 51 : 2
- 54 : 3
- 59 : 12
- 60 : 13
- 61 : 13
- 62 : 9
- 63 : 13
- 64 : 2
- 65 : 2
- 66 : 2
- 67 : 2
- 68 : 2
- 69 : 2
- 70 : 2
- 72 : 2
- 73 : 2
- 74 : 2
- 76 : 2
- 77 : 2
- 80 : 2
- 82 : 2
- 84 : 2
- 85 : 2
- 87 : 3
- 94 : 11
- 95 : 14
- 96 : 2
- 97 : 2
- 98 : 2
- 123 : 14
- ```
- ### Test cases including some with multiple valid outputs
- These test cases are in the format `input : [comma separated outputs]` where any of the listed outputs would be valid. These also include all of the single valid output test cases listed above.
- ```text
- 0 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 1 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 2 : [2]
- 3 : [3]
- 4 : [2]
- 5 : [2, 5]
- 6 : [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 7 : [7]
- 8 : [2]
- 9 : [2, 3]
- 10 : [2]
- 11 : [12, 13, 14, 15, 16]
- 12 : [2]
- 13 : [2, 7, 9, 13, 14, 15, 16]
- 14 : [2, 5, 7, 8, 10, 14]
- 15 : [3, 5, 9, 11, 15]
- 16 : [2]
- 17 : [2]
- 18 : [2]
- 19 : [2, 11]
- 20 : [2]
- 21 : [2, 13]
- 22 : [2, 14]
- 23 : [12, 15]
- 24 : [2]
- 25 : [2, 5, 14]
- 26 : [2, 9, 15]
- 27 : [3]
- 28 : [2, 3, 6, 7, 10]
- 29 : [3, 5]
- 30 : [3, 11]
- 31 : [3, 7, 9, 11]
- 32 : [2]
- 33 : [2]
- 34 : [2]
- 35 : [2]
- 36 : [2]
- 37 : [2]
- 38 : [2]
- 39 : [2, 14]
- 40 : [2]
- 41 : [2]
- 42 : [2]
- 43 : [2, 16]
- 44 : [2, 9]
- 45 : [2, 3, 5]
- 46 : [2, 7, 10]
- 47 : [12, 13]
- 48 : [2]
- 49 : [2]
- 50 : [2]
- 51 : [2]
- 52 : [2, 11]
- 53 : [2, 7, 9, 11, 14, 15]
- 54 : [3]
- 55 : [3, 7]
- 56 : [2, 12]
- 57 : [2, 3, 12]
- 58 : [2, 9, 10, 12, 13]
- 59 : [12]
- 60 : [13]
- 61 : [13]
- 62 : [9]
- 63 : [13]
- 64 : [2]
- 65 : [2]
- 66 : [2]
- 67 : [2]
- 68 : [2]
- 69 : [2]
- 70 : [2]
- 71 : [2, 15]
- 72 : [2]
- 73 : [2]
- 74 : [2]
- 75 : [2, 16]
- 76 : [2]
- 77 : [2]
- 78 : [2, 9]
- 79 : [2, 5, 9]
- 80 : [2]
- 81 : [2, 3]
- 82 : [2]
- 83 : [2, 3, 12]
- 84 : [2]
- 85 : [2]
- 86 : [2, 10, 13]
- 87 : [3]
- 88 : [2, 10]
- 89 : [2, 9, 10, 13]
- 90 : [2, 3]
- 91 : [2, 3, 7, 11, 16]
- 92 : [2, 11, 14]
- 93 : [2, 3, 11, 14]
- 94 : [11]
- 95 : [14]
- 96 : [2]
- 97 : [2]
- 98 : [2]
- 99 : [2, 3]
- 123 : [14]
- 1200 : [2]
- 1201 : [2]
- 1202 : [2]
- 1203 : [2]
- 1204 : [2]
- 1205 : [2]
- 1206 : [2]
- 1207 : [2, 11]
- 1208 : [2]
- 1209 : [2]
- 1210 : [2]
- 1211 : [12, 16]
- 1212 : [2]
- 1213 : [2, 16]
- 1214 : [2, 9]
- 1215 : [3]
- 1216 : [2]
- 1217 : [2]
- 1218 : [2]
- 1219 : [2]
- 1220 : [2]
- 1221 : [2]
- 1222 : [2]
- 1223 : [2]
- 1224 : [2]
- 1225 : [2]
- 1226 : [2]
- 1227 : [2]
- 1228 : [2]
- 1229 : [2]
- 1230 : [2]
- 1231 : [2]
- 1232 : [2]
- 1233 : [2]
- 1234 : [2]
- 1235 : [2, 12]
- 1236 : [2]
- 1237 : [2]
- 1238 : [2]
- 1239 : [2]
- 1240 : [2]
- 1241 : [2]
- 1242 : [2]
- 1243 : [2, 14, 16]
- 1244 : [2]
- 1245 : [2, 5]
- 1246 : [2]
- 1247 : [12]
- 1248 : [2]
- 1249 : [2]
- 1250 : [2]
- 1251 : [2]
- 1252 : [2]
- 1253 : [2]
- 1254 : [2, 12]
- 1255 : [2, 12]
- 1256 : [2, 12]
- 1257 : [2, 12]
- 1258 : [2, 12]
- 1259 : [12]
- 1260 : [2]
- 1261 : [2]
- 1262 : [2, 11]
- 1263 : [2, 11, 12]
- 1264 : [2]
- 1265 : [2]
- 1266 : [2]
- 1267 : [2]
- 1268 : [2, 12]
- 1269 : [2, 3, 12]
- 1270 : [2, 5, 12]
- 1271 : [12]
- 1272 : [2]
- 1273 : [2]
- 1274 : [2, 5]
- 1275 : [2, 3, 5, 9, 12, 16]
- 1276 : [2, 12]
- 1277 : [9]
- 1278 : [12]
- 1279 : [5, 12]
- 1280 : [2]
- 1281 : [2]
- 1282 : [2]
- 1283 : [2]
- 1284 : [2]
- 1285 : [2]
- 1286 : [2]
- 1287 : [2]
- 1288 : [2]
- 1289 : [2]
- 1290 : [2]
- 1291 : [2]
- 1292 : [2]
- 1293 : [2]
- 1294 : [2]
- 1295 : [12]
- 1296 : [2]
- 1297 : [2]
- 1298 : [2]
- 1299 : [2]
- ```
- > Explanations in answers are optional, but I'm more likely to upvote answers that have one.
#3: Post edited
- Given a positive integer as input, indicate which base from 2 to 16 gives the most holes in the representation of the input in that base.
- The digits used are 0123456789ABCDEF. Note that these include upper case letters (the number of holes would be different for lower case letters).
- Different fonts have different numbers of holes per character, so the number of holes per digit is as follows for this challenge (in the format `digit : number of holes`):
- ```text
- 0 : 1
- 1 : 0
- 2 : 0
- 3 : 0
- 4 : 1
- 5 : 0
- 6 : 1
- 7 : 0
- 8 : 2
- 9 : 1
- A : 1
- B : 2
- C : 0
- D : 1
- E : 0
- F : 0
- ```
- ## Input
- - A positive integer
- ## Output
- - An integer from 2 to 16
- - The output indicates which base gives the representation with the most holes (being the sum of the number of holes in each digit when represented in that base)
- - For the purposes of counting holes:
- - Each representation will have no leading zeroes
- - The base indicator characters used by some languages, such as a leading `0b` or `0x` are not included in the counting
- - If more than one base has the highest number of holes, any such base is a valid output
- ## Example
- For input `123` the representation in each of the bases from 2 to 16, and the associated number of holes, is as follows (in the format `base : representation : holes`):
- ```text
- 2 : 1111011 : 0 + 0 + 0 + 0 + 1 + 0 + 0 = 1
- 3 : 11120 : 0 + 0 + 0 + 0 + 1 = 1
- 4 : 1323 : 0 + 0 + 0 + 0 = 0
- 5 : 443 : 1 + 1 + 0 = 2
- 6 : 323 : 0 + 0 + 0 = 0
- 7 : 234 : 0 + 0 + 1 = 1
- 8 : 173 : 0 + 0 + 0 = 0
- 9 : 146 : 0 + 1 + 1 = 2
- 10 : 123 : 0 + 0 + 0 = 0
- 11 : 102 : 0 + 1 + 0 = 1
- 12 : A3 : 1 + 0 = 1
- 13 : 96 : 1 + 1 = 2
- 14 : 8B : 2 + 2 = 4
- 15 : 83 : 2 + 0 = 2
- 16 : 7B : 0 + 2 = 2
- ```
- The highest number of holes is 4, and this only occurs when the base is 14. So the only valid output is 14.
- ## Test cases
- ### Test cases with only 1 valid output
- These test cases are in the format `input : output`.
- ```text
- 2 : 2
- 3 : 3
- 4 : 2
- 7 : 7
- 8 : 2
- 10 : 2
- 12 : 2
- 16 : 2
- 17 : 2
- 18 : 2
- 20 : 2
- 24 : 2
- 27 : 3
- 32 : 2
- 33 : 2
- 34 : 2
- 35 : 2
- 36 : 2
- 37 : 2
- 38 : 2
- 40 : 2
- 41 : 2
- 42 : 2
- 48 : 2
- 49 : 2
- 50 : 2
- 51 : 2
- 54 : 3
- 59 : 12
- 60 : 13
- 61 : 13
- 62 : 9
- 63 : 13
- 64 : 2
- 65 : 2
- 66 : 2
- 67 : 2
- 68 : 2
- 69 : 2
- 70 : 2
- 72 : 2
- 73 : 2
- 74 : 2
- 76 : 2
- 77 : 2
- 80 : 2
- 82 : 2
- 84 : 2
- 85 : 2
- 87 : 3
- 94 : 11
- 95 : 14
- 96 : 2
- 97 : 2
- 98 : 2
- 123 : 14
- ```
- ### Test cases including some with multiple valid outputs
These test cases are in the format `input : [output, output, output]` where any of the listed outputs would be valid. These include all of the single valid output test cases listed above.- ```text
- 0 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 1 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 2 : [2]
- 3 : [3]
- 4 : [2]
- 5 : [2, 5]
- 6 : [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 7 : [7]
- 8 : [2]
- 9 : [2, 3]
- 10 : [2]
- 11 : [12, 13, 14, 15, 16]
- 12 : [2]
- 13 : [2, 7, 9, 13, 14, 15, 16]
- 14 : [2, 5, 7, 8, 10, 14]
- 15 : [3, 5, 9, 11, 15]
- 16 : [2]
- 17 : [2]
- 18 : [2]
- 19 : [2, 11]
- 20 : [2]
- 21 : [2, 13]
- 22 : [2, 14]
- 23 : [12, 15]
- 24 : [2]
- 25 : [2, 5, 14]
- 26 : [2, 9, 15]
- 27 : [3]
- 28 : [2, 3, 6, 7, 10]
- 29 : [3, 5]
- 30 : [3, 11]
- 31 : [3, 7, 9, 11]
- 32 : [2]
- 33 : [2]
- 34 : [2]
- 35 : [2]
- 36 : [2]
- 37 : [2]
- 38 : [2]
- 39 : [2, 14]
- 40 : [2]
- 41 : [2]
- 42 : [2]
- 43 : [2, 16]
- 44 : [2, 9]
- 45 : [2, 3, 5]
- 46 : [2, 7, 10]
- 47 : [12, 13]
- 48 : [2]
- 49 : [2]
- 50 : [2]
- 51 : [2]
- 52 : [2, 11]
- 53 : [2, 7, 9, 11, 14, 15]
- 54 : [3]
- 55 : [3, 7]
- 56 : [2, 12]
- 57 : [2, 3, 12]
- 58 : [2, 9, 10, 12, 13]
- 59 : [12]
- 60 : [13]
- 61 : [13]
- 62 : [9]
- 63 : [13]
- 64 : [2]
- 65 : [2]
- 66 : [2]
- 67 : [2]
- 68 : [2]
- 69 : [2]
- 70 : [2]
- 71 : [2, 15]
- 72 : [2]
- 73 : [2]
- 74 : [2]
- 75 : [2, 16]
- 76 : [2]
- 77 : [2]
- 78 : [2, 9]
- 79 : [2, 5, 9]
- 80 : [2]
- 81 : [2, 3]
- 82 : [2]
- 83 : [2, 3, 12]
- 84 : [2]
- 85 : [2]
- 86 : [2, 10, 13]
- 87 : [3]
- 88 : [2, 10]
- 89 : [2, 9, 10, 13]
- 90 : [2, 3]
- 91 : [2, 3, 7, 11, 16]
- 92 : [2, 11, 14]
- 93 : [2, 3, 11, 14]
- 94 : [11]
- 95 : [14]
- 96 : [2]
- 97 : [2]
- 98 : [2]
- 99 : [2, 3]
- 123 : [14]
- 1200 : [2]
- 1201 : [2]
- 1202 : [2]
- 1203 : [2]
- 1204 : [2]
- 1205 : [2]
- 1206 : [2]
- 1207 : [2, 11]
- 1208 : [2]
- 1209 : [2]
- 1210 : [2]
- 1211 : [12, 16]
- 1212 : [2]
- 1213 : [2, 16]
- 1214 : [2, 9]
- 1215 : [3]
- 1216 : [2]
- 1217 : [2]
- 1218 : [2]
- 1219 : [2]
- 1220 : [2]
- 1221 : [2]
- 1222 : [2]
- 1223 : [2]
- 1224 : [2]
- 1225 : [2]
- 1226 : [2]
- 1227 : [2]
- 1228 : [2]
- 1229 : [2]
- 1230 : [2]
- 1231 : [2]
- 1232 : [2]
- 1233 : [2]
- 1234 : [2]
- 1235 : [2, 12]
- 1236 : [2]
- 1237 : [2]
- 1238 : [2]
- 1239 : [2]
- 1240 : [2]
- 1241 : [2]
- 1242 : [2]
- 1243 : [2, 14, 16]
- 1244 : [2]
- 1245 : [2, 5]
- 1246 : [2]
- 1247 : [12]
- 1248 : [2]
- 1249 : [2]
- 1250 : [2]
- 1251 : [2]
- 1252 : [2]
- 1253 : [2]
- 1254 : [2, 12]
- 1255 : [2, 12]
- 1256 : [2, 12]
- 1257 : [2, 12]
- 1258 : [2, 12]
- 1259 : [12]
- 1260 : [2]
- 1261 : [2]
- 1262 : [2, 11]
- 1263 : [2, 11, 12]
- 1264 : [2]
- 1265 : [2]
- 1266 : [2]
- 1267 : [2]
- 1268 : [2, 12]
- 1269 : [2, 3, 12]
- 1270 : [2, 5, 12]
- 1271 : [12]
- 1272 : [2]
- 1273 : [2]
- 1274 : [2, 5]
- 1275 : [2, 3, 5, 9, 12, 16]
- 1276 : [2, 12]
- 1277 : [9]
- 1278 : [12]
- 1279 : [5, 12]
- 1280 : [2]
- 1281 : [2]
- 1282 : [2]
- 1283 : [2]
- 1284 : [2]
- 1285 : [2]
- 1286 : [2]
- 1287 : [2]
- 1288 : [2]
- 1289 : [2]
- 1290 : [2]
- 1291 : [2]
- 1292 : [2]
- 1293 : [2]
- 1294 : [2]
- 1295 : [12]
- 1296 : [2]
- 1297 : [2]
- 1298 : [2]
- 1299 : [2]
- ```
- > Explanations in answers are optional, but I'm more likely to upvote answers that have one.
- Given a positive integer as input, indicate which base from 2 to 16 gives the most holes in the representation of the input in that base.
- The digits used are 0123456789ABCDEF. Note that these include upper case letters (the number of holes would be different for lower case letters).
- Different fonts have different numbers of holes per character, so the number of holes per digit is as follows for this challenge (in the format `digit : number of holes`):
- ```text
- 0 : 1
- 1 : 0
- 2 : 0
- 3 : 0
- 4 : 1
- 5 : 0
- 6 : 1
- 7 : 0
- 8 : 2
- 9 : 1
- A : 1
- B : 2
- C : 0
- D : 1
- E : 0
- F : 0
- ```
- ## Input
- - A positive integer
- ## Output
- - An integer from 2 to 16
- - The output indicates which base gives the representation with the most holes (being the sum of the number of holes in each digit when represented in that base)
- - For the purposes of counting holes:
- - Each representation will have no leading zeroes
- - The base indicator characters used by some languages, such as a leading `0b` or `0x` are not included in the counting
- - If more than one base has the highest number of holes, any such base is a valid output
- ## Example
- For input `123` the representation in each of the bases from 2 to 16, and the associated number of holes, is as follows (in the format `base : representation : holes`):
- ```text
- 2 : 1111011 : 0 + 0 + 0 + 0 + 1 + 0 + 0 = 1
- 3 : 11120 : 0 + 0 + 0 + 0 + 1 = 1
- 4 : 1323 : 0 + 0 + 0 + 0 = 0
- 5 : 443 : 1 + 1 + 0 = 2
- 6 : 323 : 0 + 0 + 0 = 0
- 7 : 234 : 0 + 0 + 1 = 1
- 8 : 173 : 0 + 0 + 0 = 0
- 9 : 146 : 0 + 1 + 1 = 2
- 10 : 123 : 0 + 0 + 0 = 0
- 11 : 102 : 0 + 1 + 0 = 1
- 12 : A3 : 1 + 0 = 1
- 13 : 96 : 1 + 1 = 2
- 14 : 8B : 2 + 2 = 4
- 15 : 83 : 2 + 0 = 2
- 16 : 7B : 0 + 2 = 2
- ```
- The highest number of holes is 4, and this only occurs when the base is 14. So the only valid output is 14.
- ## Test cases
- ### Test cases with only 1 valid output
- These test cases are in the format `input : output`.
- ```text
- 2 : 2
- 3 : 3
- 4 : 2
- 7 : 7
- 8 : 2
- 10 : 2
- 12 : 2
- 16 : 2
- 17 : 2
- 18 : 2
- 20 : 2
- 24 : 2
- 27 : 3
- 32 : 2
- 33 : 2
- 34 : 2
- 35 : 2
- 36 : 2
- 37 : 2
- 38 : 2
- 40 : 2
- 41 : 2
- 42 : 2
- 48 : 2
- 49 : 2
- 50 : 2
- 51 : 2
- 54 : 3
- 59 : 12
- 60 : 13
- 61 : 13
- 62 : 9
- 63 : 13
- 64 : 2
- 65 : 2
- 66 : 2
- 67 : 2
- 68 : 2
- 69 : 2
- 70 : 2
- 72 : 2
- 73 : 2
- 74 : 2
- 76 : 2
- 77 : 2
- 80 : 2
- 82 : 2
- 84 : 2
- 85 : 2
- 87 : 3
- 94 : 11
- 95 : 14
- 96 : 2
- 97 : 2
- 98 : 2
- 123 : 14
- ```
- ### Test cases including some with multiple valid outputs
- These test cases are in the format `input : [comma separated outputs]` where any of the listed outputs would be valid. These also include all of the single valid output test cases listed above.
- ```text
- 0 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 1 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 2 : [2]
- 3 : [3]
- 4 : [2]
- 5 : [2, 5]
- 6 : [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 7 : [7]
- 8 : [2]
- 9 : [2, 3]
- 10 : [2]
- 11 : [12, 13, 14, 15, 16]
- 12 : [2]
- 13 : [2, 7, 9, 13, 14, 15, 16]
- 14 : [2, 5, 7, 8, 10, 14]
- 15 : [3, 5, 9, 11, 15]
- 16 : [2]
- 17 : [2]
- 18 : [2]
- 19 : [2, 11]
- 20 : [2]
- 21 : [2, 13]
- 22 : [2, 14]
- 23 : [12, 15]
- 24 : [2]
- 25 : [2, 5, 14]
- 26 : [2, 9, 15]
- 27 : [3]
- 28 : [2, 3, 6, 7, 10]
- 29 : [3, 5]
- 30 : [3, 11]
- 31 : [3, 7, 9, 11]
- 32 : [2]
- 33 : [2]
- 34 : [2]
- 35 : [2]
- 36 : [2]
- 37 : [2]
- 38 : [2]
- 39 : [2, 14]
- 40 : [2]
- 41 : [2]
- 42 : [2]
- 43 : [2, 16]
- 44 : [2, 9]
- 45 : [2, 3, 5]
- 46 : [2, 7, 10]
- 47 : [12, 13]
- 48 : [2]
- 49 : [2]
- 50 : [2]
- 51 : [2]
- 52 : [2, 11]
- 53 : [2, 7, 9, 11, 14, 15]
- 54 : [3]
- 55 : [3, 7]
- 56 : [2, 12]
- 57 : [2, 3, 12]
- 58 : [2, 9, 10, 12, 13]
- 59 : [12]
- 60 : [13]
- 61 : [13]
- 62 : [9]
- 63 : [13]
- 64 : [2]
- 65 : [2]
- 66 : [2]
- 67 : [2]
- 68 : [2]
- 69 : [2]
- 70 : [2]
- 71 : [2, 15]
- 72 : [2]
- 73 : [2]
- 74 : [2]
- 75 : [2, 16]
- 76 : [2]
- 77 : [2]
- 78 : [2, 9]
- 79 : [2, 5, 9]
- 80 : [2]
- 81 : [2, 3]
- 82 : [2]
- 83 : [2, 3, 12]
- 84 : [2]
- 85 : [2]
- 86 : [2, 10, 13]
- 87 : [3]
- 88 : [2, 10]
- 89 : [2, 9, 10, 13]
- 90 : [2, 3]
- 91 : [2, 3, 7, 11, 16]
- 92 : [2, 11, 14]
- 93 : [2, 3, 11, 14]
- 94 : [11]
- 95 : [14]
- 96 : [2]
- 97 : [2]
- 98 : [2]
- 99 : [2, 3]
- 123 : [14]
- 1200 : [2]
- 1201 : [2]
- 1202 : [2]
- 1203 : [2]
- 1204 : [2]
- 1205 : [2]
- 1206 : [2]
- 1207 : [2, 11]
- 1208 : [2]
- 1209 : [2]
- 1210 : [2]
- 1211 : [12, 16]
- 1212 : [2]
- 1213 : [2, 16]
- 1214 : [2, 9]
- 1215 : [3]
- 1216 : [2]
- 1217 : [2]
- 1218 : [2]
- 1219 : [2]
- 1220 : [2]
- 1221 : [2]
- 1222 : [2]
- 1223 : [2]
- 1224 : [2]
- 1225 : [2]
- 1226 : [2]
- 1227 : [2]
- 1228 : [2]
- 1229 : [2]
- 1230 : [2]
- 1231 : [2]
- 1232 : [2]
- 1233 : [2]
- 1234 : [2]
- 1235 : [2, 12]
- 1236 : [2]
- 1237 : [2]
- 1238 : [2]
- 1239 : [2]
- 1240 : [2]
- 1241 : [2]
- 1242 : [2]
- 1243 : [2, 14, 16]
- 1244 : [2]
- 1245 : [2, 5]
- 1246 : [2]
- 1247 : [12]
- 1248 : [2]
- 1249 : [2]
- 1250 : [2]
- 1251 : [2]
- 1252 : [2]
- 1253 : [2]
- 1254 : [2, 12]
- 1255 : [2, 12]
- 1256 : [2, 12]
- 1257 : [2, 12]
- 1258 : [2, 12]
- 1259 : [12]
- 1260 : [2]
- 1261 : [2]
- 1262 : [2, 11]
- 1263 : [2, 11, 12]
- 1264 : [2]
- 1265 : [2]
- 1266 : [2]
- 1267 : [2]
- 1268 : [2, 12]
- 1269 : [2, 3, 12]
- 1270 : [2, 5, 12]
- 1271 : [12]
- 1272 : [2]
- 1273 : [2]
- 1274 : [2, 5]
- 1275 : [2, 3, 5, 9, 12, 16]
- 1276 : [2, 12]
- 1277 : [9]
- 1278 : [12]
- 1279 : [5, 12]
- 1280 : [2]
- 1281 : [2]
- 1282 : [2]
- 1283 : [2]
- 1284 : [2]
- 1285 : [2]
- 1286 : [2]
- 1287 : [2]
- 1288 : [2]
- 1289 : [2]
- 1290 : [2]
- 1291 : [2]
- 1292 : [2]
- 1293 : [2]
- 1294 : [2]
- 1295 : [12]
- 1296 : [2]
- 1297 : [2]
- 1298 : [2]
- 1299 : [2]
- ```
- > Explanations in answers are optional, but I'm more likely to upvote answers that have one.
#2: Post edited
- Given a positive integer as input, indicate which base from 2 to 16 gives the most holes in the representation of the input in that base.
- The digits used are 0123456789ABCDEF. Note that these include upper case letters (the number of holes would be different for lower case letters).
Different fonts have different numbers of holes per character, so the number of holes per digit are as follows for this challenge (in the format `digit : number of holes`):- ```text
- 0 : 1
- 1 : 0
- 2 : 0
- 3 : 0
- 4 : 1
- 5 : 0
- 6 : 1
- 7 : 0
- 8 : 2
- 9 : 1
- A : 1
- B : 2
- C : 0
- D : 1
- E : 0
- F : 0
- ```
- ## Input
- - A positive integer
- ## Output
- - An integer from 2 to 16
- - The output indicates which base gives the representation with the most holes (being the sum of the number of holes in each digit when represented in that base)
- - For the purposes of counting holes:
- - Each representation will have no leading zeroes
- - The base indicator characters used by some languages, such as a leading `0b` or `0x` are not included in the counting
- - If more than one base has the highest number of holes, any such base is a valid output
- ## Example
- For input `123` the representation in each of the bases from 2 to 16, and the associated number of holes, is as follows (in the format `base : representation : holes`):
- ```text
- 2 : 1111011 : 0 + 0 + 0 + 0 + 1 + 0 + 0 = 1
- 3 : 11120 : 0 + 0 + 0 + 0 + 1 = 1
- 4 : 1323 : 0 + 0 + 0 + 0 = 0
- 5 : 443 : 1 + 1 + 0 = 2
- 6 : 323 : 0 + 0 + 0 = 0
- 7 : 234 : 0 + 0 + 1 = 1
- 8 : 173 : 0 + 0 + 0 = 0
- 9 : 146 : 0 + 1 + 1 = 2
- 10 : 123 : 0 + 0 + 0 = 0
- 11 : 102 : 0 + 1 + 0 = 1
- 12 : A3 : 1 + 0 = 1
- 13 : 96 : 1 + 1 = 2
- 14 : 8B : 2 + 2 = 4
- 15 : 83 : 2 + 0 = 2
- 16 : 7B : 0 + 2 = 2
- ```
- The highest number of holes is 4, and this only occurs when the base is 14. So the only valid output is 14.
- ## Test cases
- ### Test cases with only 1 valid output
- These test cases are in the format `input : output`.
- ```text
- 2 : 2
- 3 : 3
- 4 : 2
- 7 : 7
- 8 : 2
- 10 : 2
- 12 : 2
- 16 : 2
- 17 : 2
- 18 : 2
- 20 : 2
- 24 : 2
- 27 : 3
- 32 : 2
- 33 : 2
- 34 : 2
- 35 : 2
- 36 : 2
- 37 : 2
- 38 : 2
- 40 : 2
- 41 : 2
- 42 : 2
- 48 : 2
- 49 : 2
- 50 : 2
- 51 : 2
- 54 : 3
- 59 : 12
- 60 : 13
- 61 : 13
- 62 : 9
- 63 : 13
- 64 : 2
- 65 : 2
- 66 : 2
- 67 : 2
- 68 : 2
- 69 : 2
- 70 : 2
- 72 : 2
- 73 : 2
- 74 : 2
- 76 : 2
- 77 : 2
- 80 : 2
- 82 : 2
- 84 : 2
- 85 : 2
- 87 : 3
- 94 : 11
- 95 : 14
- 96 : 2
- 97 : 2
- 98 : 2
- 123 : 14
- ```
- ### Test cases including some with multiple valid outputs
- These test cases are in the format `input : [output, output, output]` where any of the listed outputs would be valid. These include all of the single valid output test cases listed above.
- ```text
- 0 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 1 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 2 : [2]
- 3 : [3]
- 4 : [2]
- 5 : [2, 5]
- 6 : [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 7 : [7]
- 8 : [2]
- 9 : [2, 3]
- 10 : [2]
- 11 : [12, 13, 14, 15, 16]
- 12 : [2]
- 13 : [2, 7, 9, 13, 14, 15, 16]
- 14 : [2, 5, 7, 8, 10, 14]
- 15 : [3, 5, 9, 11, 15]
- 16 : [2]
- 17 : [2]
- 18 : [2]
- 19 : [2, 11]
- 20 : [2]
- 21 : [2, 13]
- 22 : [2, 14]
- 23 : [12, 15]
- 24 : [2]
- 25 : [2, 5, 14]
- 26 : [2, 9, 15]
- 27 : [3]
- 28 : [2, 3, 6, 7, 10]
- 29 : [3, 5]
- 30 : [3, 11]
- 31 : [3, 7, 9, 11]
- 32 : [2]
- 33 : [2]
- 34 : [2]
- 35 : [2]
- 36 : [2]
- 37 : [2]
- 38 : [2]
- 39 : [2, 14]
- 40 : [2]
- 41 : [2]
- 42 : [2]
- 43 : [2, 16]
- 44 : [2, 9]
- 45 : [2, 3, 5]
- 46 : [2, 7, 10]
- 47 : [12, 13]
- 48 : [2]
- 49 : [2]
- 50 : [2]
- 51 : [2]
- 52 : [2, 11]
- 53 : [2, 7, 9, 11, 14, 15]
- 54 : [3]
- 55 : [3, 7]
- 56 : [2, 12]
- 57 : [2, 3, 12]
- 58 : [2, 9, 10, 12, 13]
- 59 : [12]
- 60 : [13]
- 61 : [13]
- 62 : [9]
- 63 : [13]
- 64 : [2]
- 65 : [2]
- 66 : [2]
- 67 : [2]
- 68 : [2]
- 69 : [2]
- 70 : [2]
- 71 : [2, 15]
- 72 : [2]
- 73 : [2]
- 74 : [2]
- 75 : [2, 16]
- 76 : [2]
- 77 : [2]
- 78 : [2, 9]
- 79 : [2, 5, 9]
- 80 : [2]
- 81 : [2, 3]
- 82 : [2]
- 83 : [2, 3, 12]
- 84 : [2]
- 85 : [2]
- 86 : [2, 10, 13]
- 87 : [3]
- 88 : [2, 10]
- 89 : [2, 9, 10, 13]
- 90 : [2, 3]
- 91 : [2, 3, 7, 11, 16]
- 92 : [2, 11, 14]
- 93 : [2, 3, 11, 14]
- 94 : [11]
- 95 : [14]
- 96 : [2]
- 97 : [2]
- 98 : [2]
- 99 : [2, 3]
- 123 : [14]
- 1200 : [2]
- 1201 : [2]
- 1202 : [2]
- 1203 : [2]
- 1204 : [2]
- 1205 : [2]
- 1206 : [2]
- 1207 : [2, 11]
- 1208 : [2]
- 1209 : [2]
- 1210 : [2]
- 1211 : [12, 16]
- 1212 : [2]
- 1213 : [2, 16]
- 1214 : [2, 9]
- 1215 : [3]
- 1216 : [2]
- 1217 : [2]
- 1218 : [2]
- 1219 : [2]
- 1220 : [2]
- 1221 : [2]
- 1222 : [2]
- 1223 : [2]
- 1224 : [2]
- 1225 : [2]
- 1226 : [2]
- 1227 : [2]
- 1228 : [2]
- 1229 : [2]
- 1230 : [2]
- 1231 : [2]
- 1232 : [2]
- 1233 : [2]
- 1234 : [2]
- 1235 : [2, 12]
- 1236 : [2]
- 1237 : [2]
- 1238 : [2]
- 1239 : [2]
- 1240 : [2]
- 1241 : [2]
- 1242 : [2]
- 1243 : [2, 14, 16]
- 1244 : [2]
- 1245 : [2, 5]
- 1246 : [2]
- 1247 : [12]
- 1248 : [2]
- 1249 : [2]
- 1250 : [2]
- 1251 : [2]
- 1252 : [2]
- 1253 : [2]
- 1254 : [2, 12]
- 1255 : [2, 12]
- 1256 : [2, 12]
- 1257 : [2, 12]
- 1258 : [2, 12]
- 1259 : [12]
- 1260 : [2]
- 1261 : [2]
- 1262 : [2, 11]
- 1263 : [2, 11, 12]
- 1264 : [2]
- 1265 : [2]
- 1266 : [2]
- 1267 : [2]
- 1268 : [2, 12]
- 1269 : [2, 3, 12]
- 1270 : [2, 5, 12]
- 1271 : [12]
- 1272 : [2]
- 1273 : [2]
- 1274 : [2, 5]
- 1275 : [2, 3, 5, 9, 12, 16]
- 1276 : [2, 12]
- 1277 : [9]
- 1278 : [12]
- 1279 : [5, 12]
- 1280 : [2]
- 1281 : [2]
- 1282 : [2]
- 1283 : [2]
- 1284 : [2]
- 1285 : [2]
- 1286 : [2]
- 1287 : [2]
- 1288 : [2]
- 1289 : [2]
- 1290 : [2]
- 1291 : [2]
- 1292 : [2]
- 1293 : [2]
- 1294 : [2]
- 1295 : [12]
- 1296 : [2]
- 1297 : [2]
- 1298 : [2]
- 1299 : [2]
- ```
- > Explanations in answers are optional, but I'm more likely to upvote answers that have one.
- Given a positive integer as input, indicate which base from 2 to 16 gives the most holes in the representation of the input in that base.
- The digits used are 0123456789ABCDEF. Note that these include upper case letters (the number of holes would be different for lower case letters).
- Different fonts have different numbers of holes per character, so the number of holes per digit is as follows for this challenge (in the format `digit : number of holes`):
- ```text
- 0 : 1
- 1 : 0
- 2 : 0
- 3 : 0
- 4 : 1
- 5 : 0
- 6 : 1
- 7 : 0
- 8 : 2
- 9 : 1
- A : 1
- B : 2
- C : 0
- D : 1
- E : 0
- F : 0
- ```
- ## Input
- - A positive integer
- ## Output
- - An integer from 2 to 16
- - The output indicates which base gives the representation with the most holes (being the sum of the number of holes in each digit when represented in that base)
- - For the purposes of counting holes:
- - Each representation will have no leading zeroes
- - The base indicator characters used by some languages, such as a leading `0b` or `0x` are not included in the counting
- - If more than one base has the highest number of holes, any such base is a valid output
- ## Example
- For input `123` the representation in each of the bases from 2 to 16, and the associated number of holes, is as follows (in the format `base : representation : holes`):
- ```text
- 2 : 1111011 : 0 + 0 + 0 + 0 + 1 + 0 + 0 = 1
- 3 : 11120 : 0 + 0 + 0 + 0 + 1 = 1
- 4 : 1323 : 0 + 0 + 0 + 0 = 0
- 5 : 443 : 1 + 1 + 0 = 2
- 6 : 323 : 0 + 0 + 0 = 0
- 7 : 234 : 0 + 0 + 1 = 1
- 8 : 173 : 0 + 0 + 0 = 0
- 9 : 146 : 0 + 1 + 1 = 2
- 10 : 123 : 0 + 0 + 0 = 0
- 11 : 102 : 0 + 1 + 0 = 1
- 12 : A3 : 1 + 0 = 1
- 13 : 96 : 1 + 1 = 2
- 14 : 8B : 2 + 2 = 4
- 15 : 83 : 2 + 0 = 2
- 16 : 7B : 0 + 2 = 2
- ```
- The highest number of holes is 4, and this only occurs when the base is 14. So the only valid output is 14.
- ## Test cases
- ### Test cases with only 1 valid output
- These test cases are in the format `input : output`.
- ```text
- 2 : 2
- 3 : 3
- 4 : 2
- 7 : 7
- 8 : 2
- 10 : 2
- 12 : 2
- 16 : 2
- 17 : 2
- 18 : 2
- 20 : 2
- 24 : 2
- 27 : 3
- 32 : 2
- 33 : 2
- 34 : 2
- 35 : 2
- 36 : 2
- 37 : 2
- 38 : 2
- 40 : 2
- 41 : 2
- 42 : 2
- 48 : 2
- 49 : 2
- 50 : 2
- 51 : 2
- 54 : 3
- 59 : 12
- 60 : 13
- 61 : 13
- 62 : 9
- 63 : 13
- 64 : 2
- 65 : 2
- 66 : 2
- 67 : 2
- 68 : 2
- 69 : 2
- 70 : 2
- 72 : 2
- 73 : 2
- 74 : 2
- 76 : 2
- 77 : 2
- 80 : 2
- 82 : 2
- 84 : 2
- 85 : 2
- 87 : 3
- 94 : 11
- 95 : 14
- 96 : 2
- 97 : 2
- 98 : 2
- 123 : 14
- ```
- ### Test cases including some with multiple valid outputs
- These test cases are in the format `input : [output, output, output]` where any of the listed outputs would be valid. These include all of the single valid output test cases listed above.
- ```text
- 0 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 1 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 2 : [2]
- 3 : [3]
- 4 : [2]
- 5 : [2, 5]
- 6 : [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
- 7 : [7]
- 8 : [2]
- 9 : [2, 3]
- 10 : [2]
- 11 : [12, 13, 14, 15, 16]
- 12 : [2]
- 13 : [2, 7, 9, 13, 14, 15, 16]
- 14 : [2, 5, 7, 8, 10, 14]
- 15 : [3, 5, 9, 11, 15]
- 16 : [2]
- 17 : [2]
- 18 : [2]
- 19 : [2, 11]
- 20 : [2]
- 21 : [2, 13]
- 22 : [2, 14]
- 23 : [12, 15]
- 24 : [2]
- 25 : [2, 5, 14]
- 26 : [2, 9, 15]
- 27 : [3]
- 28 : [2, 3, 6, 7, 10]
- 29 : [3, 5]
- 30 : [3, 11]
- 31 : [3, 7, 9, 11]
- 32 : [2]
- 33 : [2]
- 34 : [2]
- 35 : [2]
- 36 : [2]
- 37 : [2]
- 38 : [2]
- 39 : [2, 14]
- 40 : [2]
- 41 : [2]
- 42 : [2]
- 43 : [2, 16]
- 44 : [2, 9]
- 45 : [2, 3, 5]
- 46 : [2, 7, 10]
- 47 : [12, 13]
- 48 : [2]
- 49 : [2]
- 50 : [2]
- 51 : [2]
- 52 : [2, 11]
- 53 : [2, 7, 9, 11, 14, 15]
- 54 : [3]
- 55 : [3, 7]
- 56 : [2, 12]
- 57 : [2, 3, 12]
- 58 : [2, 9, 10, 12, 13]
- 59 : [12]
- 60 : [13]
- 61 : [13]
- 62 : [9]
- 63 : [13]
- 64 : [2]
- 65 : [2]
- 66 : [2]
- 67 : [2]
- 68 : [2]
- 69 : [2]
- 70 : [2]
- 71 : [2, 15]
- 72 : [2]
- 73 : [2]
- 74 : [2]
- 75 : [2, 16]
- 76 : [2]
- 77 : [2]
- 78 : [2, 9]
- 79 : [2, 5, 9]
- 80 : [2]
- 81 : [2, 3]
- 82 : [2]
- 83 : [2, 3, 12]
- 84 : [2]
- 85 : [2]
- 86 : [2, 10, 13]
- 87 : [3]
- 88 : [2, 10]
- 89 : [2, 9, 10, 13]
- 90 : [2, 3]
- 91 : [2, 3, 7, 11, 16]
- 92 : [2, 11, 14]
- 93 : [2, 3, 11, 14]
- 94 : [11]
- 95 : [14]
- 96 : [2]
- 97 : [2]
- 98 : [2]
- 99 : [2, 3]
- 123 : [14]
- 1200 : [2]
- 1201 : [2]
- 1202 : [2]
- 1203 : [2]
- 1204 : [2]
- 1205 : [2]
- 1206 : [2]
- 1207 : [2, 11]
- 1208 : [2]
- 1209 : [2]
- 1210 : [2]
- 1211 : [12, 16]
- 1212 : [2]
- 1213 : [2, 16]
- 1214 : [2, 9]
- 1215 : [3]
- 1216 : [2]
- 1217 : [2]
- 1218 : [2]
- 1219 : [2]
- 1220 : [2]
- 1221 : [2]
- 1222 : [2]
- 1223 : [2]
- 1224 : [2]
- 1225 : [2]
- 1226 : [2]
- 1227 : [2]
- 1228 : [2]
- 1229 : [2]
- 1230 : [2]
- 1231 : [2]
- 1232 : [2]
- 1233 : [2]
- 1234 : [2]
- 1235 : [2, 12]
- 1236 : [2]
- 1237 : [2]
- 1238 : [2]
- 1239 : [2]
- 1240 : [2]
- 1241 : [2]
- 1242 : [2]
- 1243 : [2, 14, 16]
- 1244 : [2]
- 1245 : [2, 5]
- 1246 : [2]
- 1247 : [12]
- 1248 : [2]
- 1249 : [2]
- 1250 : [2]
- 1251 : [2]
- 1252 : [2]
- 1253 : [2]
- 1254 : [2, 12]
- 1255 : [2, 12]
- 1256 : [2, 12]
- 1257 : [2, 12]
- 1258 : [2, 12]
- 1259 : [12]
- 1260 : [2]
- 1261 : [2]
- 1262 : [2, 11]
- 1263 : [2, 11, 12]
- 1264 : [2]
- 1265 : [2]
- 1266 : [2]
- 1267 : [2]
- 1268 : [2, 12]
- 1269 : [2, 3, 12]
- 1270 : [2, 5, 12]
- 1271 : [12]
- 1272 : [2]
- 1273 : [2]
- 1274 : [2, 5]
- 1275 : [2, 3, 5, 9, 12, 16]
- 1276 : [2, 12]
- 1277 : [9]
- 1278 : [12]
- 1279 : [5, 12]
- 1280 : [2]
- 1281 : [2]
- 1282 : [2]
- 1283 : [2]
- 1284 : [2]
- 1285 : [2]
- 1286 : [2]
- 1287 : [2]
- 1288 : [2]
- 1289 : [2]
- 1290 : [2]
- 1291 : [2]
- 1292 : [2]
- 1293 : [2]
- 1294 : [2]
- 1295 : [12]
- 1296 : [2]
- 1297 : [2]
- 1298 : [2]
- 1299 : [2]
- ```
- > Explanations in answers are optional, but I'm more likely to upvote answers that have one.
#1: Initial revision
Holeyest base representation
Given a positive integer as input, indicate which base from 2 to 16 gives the most holes in the representation of the input in that base. The digits used are 0123456789ABCDEF. Note that these include upper case letters (the number of holes would be different for lower case letters). Different fonts have different numbers of holes per character, so the number of holes per digit are as follows for this challenge (in the format `digit : number of holes`): ```text 0 : 1 1 : 0 2 : 0 3 : 0 4 : 1 5 : 0 6 : 1 7 : 0 8 : 2 9 : 1 A : 1 B : 2 C : 0 D : 1 E : 0 F : 0 ``` ## Input - A positive integer ## Output - An integer from 2 to 16 - The output indicates which base gives the representation with the most holes (being the sum of the number of holes in each digit when represented in that base) - For the purposes of counting holes: - Each representation will have no leading zeroes - The base indicator characters used by some languages, such as a leading `0b` or `0x` are not included in the counting - If more than one base has the highest number of holes, any such base is a valid output ## Example For input `123` the representation in each of the bases from 2 to 16, and the associated number of holes, is as follows (in the format `base : representation : holes`): ```text 2 : 1111011 : 0 + 0 + 0 + 0 + 1 + 0 + 0 = 1 3 : 11120 : 0 + 0 + 0 + 0 + 1 = 1 4 : 1323 : 0 + 0 + 0 + 0 = 0 5 : 443 : 1 + 1 + 0 = 2 6 : 323 : 0 + 0 + 0 = 0 7 : 234 : 0 + 0 + 1 = 1 8 : 173 : 0 + 0 + 0 = 0 9 : 146 : 0 + 1 + 1 = 2 10 : 123 : 0 + 0 + 0 = 0 11 : 102 : 0 + 1 + 0 = 1 12 : A3 : 1 + 0 = 1 13 : 96 : 1 + 1 = 2 14 : 8B : 2 + 2 = 4 15 : 83 : 2 + 0 = 2 16 : 7B : 0 + 2 = 2 ``` The highest number of holes is 4, and this only occurs when the base is 14. So the only valid output is 14. ## Test cases ### Test cases with only 1 valid output These test cases are in the format `input : output`. ```text 2 : 2 3 : 3 4 : 2 7 : 7 8 : 2 10 : 2 12 : 2 16 : 2 17 : 2 18 : 2 20 : 2 24 : 2 27 : 3 32 : 2 33 : 2 34 : 2 35 : 2 36 : 2 37 : 2 38 : 2 40 : 2 41 : 2 42 : 2 48 : 2 49 : 2 50 : 2 51 : 2 54 : 3 59 : 12 60 : 13 61 : 13 62 : 9 63 : 13 64 : 2 65 : 2 66 : 2 67 : 2 68 : 2 69 : 2 70 : 2 72 : 2 73 : 2 74 : 2 76 : 2 77 : 2 80 : 2 82 : 2 84 : 2 85 : 2 87 : 3 94 : 11 95 : 14 96 : 2 97 : 2 98 : 2 123 : 14 ``` ### Test cases including some with multiple valid outputs These test cases are in the format `input : [output, output, output]` where any of the listed outputs would be valid. These include all of the single valid output test cases listed above. ```text 0 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] 1 : [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] 2 : [2] 3 : [3] 4 : [2] 5 : [2, 5] 6 : [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] 7 : [7] 8 : [2] 9 : [2, 3] 10 : [2] 11 : [12, 13, 14, 15, 16] 12 : [2] 13 : [2, 7, 9, 13, 14, 15, 16] 14 : [2, 5, 7, 8, 10, 14] 15 : [3, 5, 9, 11, 15] 16 : [2] 17 : [2] 18 : [2] 19 : [2, 11] 20 : [2] 21 : [2, 13] 22 : [2, 14] 23 : [12, 15] 24 : [2] 25 : [2, 5, 14] 26 : [2, 9, 15] 27 : [3] 28 : [2, 3, 6, 7, 10] 29 : [3, 5] 30 : [3, 11] 31 : [3, 7, 9, 11] 32 : [2] 33 : [2] 34 : [2] 35 : [2] 36 : [2] 37 : [2] 38 : [2] 39 : [2, 14] 40 : [2] 41 : [2] 42 : [2] 43 : [2, 16] 44 : [2, 9] 45 : [2, 3, 5] 46 : [2, 7, 10] 47 : [12, 13] 48 : [2] 49 : [2] 50 : [2] 51 : [2] 52 : [2, 11] 53 : [2, 7, 9, 11, 14, 15] 54 : [3] 55 : [3, 7] 56 : [2, 12] 57 : [2, 3, 12] 58 : [2, 9, 10, 12, 13] 59 : [12] 60 : [13] 61 : [13] 62 : [9] 63 : [13] 64 : [2] 65 : [2] 66 : [2] 67 : [2] 68 : [2] 69 : [2] 70 : [2] 71 : [2, 15] 72 : [2] 73 : [2] 74 : [2] 75 : [2, 16] 76 : [2] 77 : [2] 78 : [2, 9] 79 : [2, 5, 9] 80 : [2] 81 : [2, 3] 82 : [2] 83 : [2, 3, 12] 84 : [2] 85 : [2] 86 : [2, 10, 13] 87 : [3] 88 : [2, 10] 89 : [2, 9, 10, 13] 90 : [2, 3] 91 : [2, 3, 7, 11, 16] 92 : [2, 11, 14] 93 : [2, 3, 11, 14] 94 : [11] 95 : [14] 96 : [2] 97 : [2] 98 : [2] 99 : [2, 3] 123 : [14] 1200 : [2] 1201 : [2] 1202 : [2] 1203 : [2] 1204 : [2] 1205 : [2] 1206 : [2] 1207 : [2, 11] 1208 : [2] 1209 : [2] 1210 : [2] 1211 : [12, 16] 1212 : [2] 1213 : [2, 16] 1214 : [2, 9] 1215 : [3] 1216 : [2] 1217 : [2] 1218 : [2] 1219 : [2] 1220 : [2] 1221 : [2] 1222 : [2] 1223 : [2] 1224 : [2] 1225 : [2] 1226 : [2] 1227 : [2] 1228 : [2] 1229 : [2] 1230 : [2] 1231 : [2] 1232 : [2] 1233 : [2] 1234 : [2] 1235 : [2, 12] 1236 : [2] 1237 : [2] 1238 : [2] 1239 : [2] 1240 : [2] 1241 : [2] 1242 : [2] 1243 : [2, 14, 16] 1244 : [2] 1245 : [2, 5] 1246 : [2] 1247 : [12] 1248 : [2] 1249 : [2] 1250 : [2] 1251 : [2] 1252 : [2] 1253 : [2] 1254 : [2, 12] 1255 : [2, 12] 1256 : [2, 12] 1257 : [2, 12] 1258 : [2, 12] 1259 : [12] 1260 : [2] 1261 : [2] 1262 : [2, 11] 1263 : [2, 11, 12] 1264 : [2] 1265 : [2] 1266 : [2] 1267 : [2] 1268 : [2, 12] 1269 : [2, 3, 12] 1270 : [2, 5, 12] 1271 : [12] 1272 : [2] 1273 : [2] 1274 : [2, 5] 1275 : [2, 3, 5, 9, 12, 16] 1276 : [2, 12] 1277 : [9] 1278 : [12] 1279 : [5, 12] 1280 : [2] 1281 : [2] 1282 : [2] 1283 : [2] 1284 : [2] 1285 : [2] 1286 : [2] 1287 : [2] 1288 : [2] 1289 : [2] 1290 : [2] 1291 : [2] 1292 : [2] 1293 : [2] 1294 : [2] 1295 : [12] 1296 : [2] 1297 : [2] 1298 : [2] 1299 : [2] ``` > Explanations in answers are optional, but I'm more likely to upvote answers that have one.