Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Sandbox

Post History

66%
+2 −0
#6: Post edited by user avatar trichoplax‭ · 2023-07-06T21:14:17Z (over 1 year ago)
Mark as finalized
  • Expected value of highest dice rolled
  • Expected value of highest dice rolled [FINALIZED]
  • You roll $N$ dice simultaneously. Your score is the highest number rolled. If you play this game many times, what is the expected value (mean) of your score?
  • ## Input
  • - A positive integer $N$.
  • - Your code must work for inputs up to and including 10, but may crash, error, or give incorrect output for larger inputs.
  • ## Output
  • - The expected value (the mean value) of the highest individual dice result when $N$ dice are rolled simultaneously.
  • - For inputs up to and including 10, your output is valid if rounding it to 6 decimal places results in the output shown in the test cases.
  • *Note that this means that if you find an incorrect algorithm that happens to give the correct result when rounded to 6 decimal places for inputs from 1 to 10, that is still a valid entry.*
  • ## Test cases
  • - Test cases are in the format `input : output`.
  • ```text
  • 1 : 3.500000
  • 2 : 4.472222
  • 3 : 4.958333
  • 4 : 5.244599
  • 5 : 5.430941
  • 6 : 5.560292
  • 7 : 5.654117
  • 8 : 5.724354
  • 9 : 5.778177
  • 10 : 5.820159
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
  • ## Now posted: [Expected value of highest dice rolled](https://codegolf.codidact.com/posts/288885)
  • ---
  • You roll $N$ dice simultaneously. Your score is the highest number rolled. If you play this game many times, what is the expected value (mean) of your score?
  • ## Input
  • - A positive integer $N$.
  • - Your code must work for inputs up to and including 10, but may crash, error, or give incorrect output for larger inputs.
  • ## Output
  • - The expected value (the mean value) of the highest individual dice result when $N$ dice are rolled simultaneously.
  • - For inputs up to and including 10, your output is valid if rounding it to 6 decimal places results in the output shown in the test cases.
  • *Note that this means that if you find an incorrect algorithm that happens to give the correct result when rounded to 6 decimal places for inputs from 1 to 10, that is still a valid entry.*
  • ## Test cases
  • - Test cases are in the format `input : output`.
  • ```text
  • 1 : 3.500000
  • 2 : 4.472222
  • 3 : 4.958333
  • 4 : 5.244599
  • 5 : 5.430941
  • 6 : 5.560292
  • 7 : 5.654117
  • 8 : 5.724354
  • 9 : 5.778177
  • 10 : 5.820159
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
#5: Post edited by user avatar trichoplax‭ · 2023-07-06T21:11:21Z (over 1 year ago)
Streamline
  • You roll $N$ dice simultaneously. Your score is the highest number rolled. If you play this game many times, what is the expected value (mean) of your score?
  • ## Input
  • - A positive integer $N$.
  • - Your code must work for inputs up to and including 10, but may crash or error for larger inputs.
  • ## Output
  • - The expected value (the mean value) of the highest individual dice result when $N$ dice are rolled simultaneously.
  • - For inputs up to and including 10, the output must be correct to 6 decimal places.
  • - If you provide more than 6 decimal places, the rest do not need to be correct.
  • *Note that this means that if you find an incorrect algorithm that happens to give the correct first 6 decimal places for inputs from 1 to 10, that is still a valid entry.*
  • ## Test cases
  • - Test cases are in the format `input : output`.
  • - Outputs are shown to 29 decimal places, but only the first 6 are required.
  • - Inputs are listed up to 100, but only the first 10 are required.
  • ```text
  • 1 : 3.50000000000000000000000000000
  • 2 : 4.47222222222222222222222222222
  • 3 : 4.95833333333333333333333333333
  • 4 : 5.24459876543209876543209876543
  • 5 : 5.43094135802469135802469135802
  • 6 : 5.56029235253772290809327846365
  • 7 : 5.65411736968449931412894375857
  • 8 : 5.72435425716354214296601127877
  • 9 : 5.77817697616598079561042524005
  • 10 : 5.82015937306834154685092042202
  • 11 : 5.85335706527894206506460735999
  • 12 : 5.87988997582530915943632501068
  • 13 : 5.90127519231210814088487715475
  • 14 : 5.91862670254239982137663865269
  • 15 : 5.93278028294863316396677461217
  • 16 : 5.94437438620726706763129530818
  • 17 : 5.95390415952465750681465958813
  • 18 : 5.96175850647834296160754452251
  • 19 : 5.96824613483573478052351165790
  • 20 : 5.97361426407447557663984765006
  • 21 : 5.97806232620687085074595293012
  • 22 : 5.98175217846144708662154353022
  • 23 : 5.98481583773702261975593217245
  • 24 : 5.98736142198727564742707212114
  • 25 : 5.98947777205805890939664416722
  • 26 : 5.99123808700442039912763192534
  • 27 : 5.99270281104071658824509961829
  • 28 : 5.99392194517515569233729905843
  • 29 : 5.99493691121505910010725938052
  • 30 : 5.99578206374053429687749343718
  • 31 : 5.99648592261006367516482569756
  • 32 : 5.99707218178527995084736694167
  • 33 : 5.99756053786868087649928650274
  • 34 : 5.99796737246493066079858958712
  • 35 : 5.99830631543055017861569950830
  • 36 : 5.99858871066207446521322300997
  • 37 : 5.99882400186341138245450681838
  • 38 : 5.99902005242648948549576095711
  • 39 : 5.99918341093743479553132394038
  • 40 : 5.99931953172456703574223466691
  • 41 : 5.99943295817706350108795983587
  • 42 : 5.99952747519634081538911322617
  • 43 : 5.99960623602945068095518442501
  • 44 : 5.99967186782397404767755480207
  • 45 : 5.99972655949737104393862636712
  • 46 : 5.99977213489940115923030314943
  • 47 : 5.99981011373944957989563752749
  • 48 : 5.99984176233172849189022933653
  • 49 : 5.99986813586456479870290813229
  • 50 : 5.99989011361255339407569498867
  • 51 : 5.99990842827184954870321285747
  • 52 : 5.99992369040080016589174296589
  • 53 : 5.99993640878350603044198445896
  • 54 : 5.99994700739703671894286363020
  • 55 : 5.99995583954916283311195393381
  • 56 : 5.99996319965872384717127603489
  • 57 : 5.99996933307188419526385210950
  • 58 : 5.99997444424186859925185882190
  • 59 : 5.99997870354508945667904295502
  • 60 : 5.99998225296104051857478470078
  • 61 : 5.99998521080539996849966854970
  • 62 : 5.99998767567418855349310233867
  • 63 : 5.99998972973050506993796648767
  • 64 : 5.99999144144343063073206840811
  • 65 : 5.99999286787042090723765344027
  • 66 : 5.99999405655928101044676381654
  • 67 : 5.99999504713313212275883242164
  • 68 : 5.99999587261120873388929359398
  • 69 : 5.99999656050951747707865703098
  • 70 : 5.99999713375804914123485643137
  • 71 : 5.99999761146511955791960329286
  • 72 : 5.99999800955431870285999319781
  • 73 : 5.99999834129530052211240888309
  • 74 : 5.99999861774610705935749422818
  • 75 : 5.99999884812177141008489719171
  • 76 : 5.99999904010148652659540160860
  • 77 : 5.99999920008457900651260250252
  • 78 : 5.99999933340382043943812434706
  • 79 : 5.99999944450318676665018476267
  • 80 : 5.99999953708599101695409676737
  • 81 : 5.99999961423832721062548685767
  • 82 : 5.99999967853194025096373203645
  • 83 : 5.99999973210995081498699422189
  • 84 : 5.99999977675829274972286241220
  • 85 : 5.99999981396524422736929682262
  • 86 : 5.99999984497103703565235500206
  • 87 : 5.99999987080919764938447871130
  • 88 : 5.99999989234099812093652084287
  • 89 : 5.99999991028416515396895975767
  • 90 : 5.99999992523680433043315027918
  • 91 : 5.99999993769733696566696999774
  • 92 : 5.99999994808111415381537150814
  • 93 : 5.99999995673426180535251837455
  • 94 : 5.99999996394521817813134894619
  • 95 : 5.99999996995434848644562432230
  • 96 : 5.99999997496195707515102040223
  • 97 : 5.99999997913496423136785042429
  • 98 : 5.99999998261247019419009763519
  • 99 : 5.99999998551039182941411843930
  • 100 : 5.99999998792532652512667897273
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
  • You roll $N$ dice simultaneously. Your score is the highest number rolled. If you play this game many times, what is the expected value (mean) of your score?
  • ## Input
  • - A positive integer $N$.
  • - Your code must work for inputs up to and including 10, but may crash, error, or give incorrect output for larger inputs.
  • ## Output
  • - The expected value (the mean value) of the highest individual dice result when $N$ dice are rolled simultaneously.
  • - For inputs up to and including 10, your output is valid if rounding it to 6 decimal places results in the output shown in the test cases.
  • *Note that this means that if you find an incorrect algorithm that happens to give the correct result when rounded to 6 decimal places for inputs from 1 to 10, that is still a valid entry.*
  • ## Test cases
  • - Test cases are in the format `input : output`.
  • ```text
  • 1 : 3.500000
  • 2 : 4.472222
  • 3 : 4.958333
  • 4 : 5.244599
  • 5 : 5.430941
  • 6 : 5.560292
  • 7 : 5.654117
  • 8 : 5.724354
  • 9 : 5.778177
  • 10 : 5.820159
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
#4: Post edited by user avatar trichoplax‭ · 2023-07-06T07:52:12Z (over 1 year ago)
Remove ambiguity
  • You roll $N$ dice simultaneously. Your score is the highest number rolled. If you play this game many times, what is the expected value (mean) of your score?
  • ## Input
  • - A positive integer $N$.
  • - Your code must work for inputs up to and including 10, but may crash or error for larger inputs.
  • ## Output
  • - The expected value (the mean value) of the highest individual dice result when $N$ dice are rolled simultaneously.
  • - For inputs up to and including 10, the output must be correct to 6 decimal places.
  • - If you provide more than 6 decimal places, they do not need to be correct.
  • *Note that this means that if you find an incorrect algorithm that happens to give the correct first 6 decimal places for inputs from 1 to 10, that is still a valid entry.*
  • ## Test cases
  • - Test cases are in the format `input : output`.
  • - Outputs are shown to 29 decimal places, but only the first 6 are required.
  • - Inputs are listed up to 100, but only the first 10 are required.
  • ```text
  • 1 : 3.50000000000000000000000000000
  • 2 : 4.47222222222222222222222222222
  • 3 : 4.95833333333333333333333333333
  • 4 : 5.24459876543209876543209876543
  • 5 : 5.43094135802469135802469135802
  • 6 : 5.56029235253772290809327846365
  • 7 : 5.65411736968449931412894375857
  • 8 : 5.72435425716354214296601127877
  • 9 : 5.77817697616598079561042524005
  • 10 : 5.82015937306834154685092042202
  • 11 : 5.85335706527894206506460735999
  • 12 : 5.87988997582530915943632501068
  • 13 : 5.90127519231210814088487715475
  • 14 : 5.91862670254239982137663865269
  • 15 : 5.93278028294863316396677461217
  • 16 : 5.94437438620726706763129530818
  • 17 : 5.95390415952465750681465958813
  • 18 : 5.96175850647834296160754452251
  • 19 : 5.96824613483573478052351165790
  • 20 : 5.97361426407447557663984765006
  • 21 : 5.97806232620687085074595293012
  • 22 : 5.98175217846144708662154353022
  • 23 : 5.98481583773702261975593217245
  • 24 : 5.98736142198727564742707212114
  • 25 : 5.98947777205805890939664416722
  • 26 : 5.99123808700442039912763192534
  • 27 : 5.99270281104071658824509961829
  • 28 : 5.99392194517515569233729905843
  • 29 : 5.99493691121505910010725938052
  • 30 : 5.99578206374053429687749343718
  • 31 : 5.99648592261006367516482569756
  • 32 : 5.99707218178527995084736694167
  • 33 : 5.99756053786868087649928650274
  • 34 : 5.99796737246493066079858958712
  • 35 : 5.99830631543055017861569950830
  • 36 : 5.99858871066207446521322300997
  • 37 : 5.99882400186341138245450681838
  • 38 : 5.99902005242648948549576095711
  • 39 : 5.99918341093743479553132394038
  • 40 : 5.99931953172456703574223466691
  • 41 : 5.99943295817706350108795983587
  • 42 : 5.99952747519634081538911322617
  • 43 : 5.99960623602945068095518442501
  • 44 : 5.99967186782397404767755480207
  • 45 : 5.99972655949737104393862636712
  • 46 : 5.99977213489940115923030314943
  • 47 : 5.99981011373944957989563752749
  • 48 : 5.99984176233172849189022933653
  • 49 : 5.99986813586456479870290813229
  • 50 : 5.99989011361255339407569498867
  • 51 : 5.99990842827184954870321285747
  • 52 : 5.99992369040080016589174296589
  • 53 : 5.99993640878350603044198445896
  • 54 : 5.99994700739703671894286363020
  • 55 : 5.99995583954916283311195393381
  • 56 : 5.99996319965872384717127603489
  • 57 : 5.99996933307188419526385210950
  • 58 : 5.99997444424186859925185882190
  • 59 : 5.99997870354508945667904295502
  • 60 : 5.99998225296104051857478470078
  • 61 : 5.99998521080539996849966854970
  • 62 : 5.99998767567418855349310233867
  • 63 : 5.99998972973050506993796648767
  • 64 : 5.99999144144343063073206840811
  • 65 : 5.99999286787042090723765344027
  • 66 : 5.99999405655928101044676381654
  • 67 : 5.99999504713313212275883242164
  • 68 : 5.99999587261120873388929359398
  • 69 : 5.99999656050951747707865703098
  • 70 : 5.99999713375804914123485643137
  • 71 : 5.99999761146511955791960329286
  • 72 : 5.99999800955431870285999319781
  • 73 : 5.99999834129530052211240888309
  • 74 : 5.99999861774610705935749422818
  • 75 : 5.99999884812177141008489719171
  • 76 : 5.99999904010148652659540160860
  • 77 : 5.99999920008457900651260250252
  • 78 : 5.99999933340382043943812434706
  • 79 : 5.99999944450318676665018476267
  • 80 : 5.99999953708599101695409676737
  • 81 : 5.99999961423832721062548685767
  • 82 : 5.99999967853194025096373203645
  • 83 : 5.99999973210995081498699422189
  • 84 : 5.99999977675829274972286241220
  • 85 : 5.99999981396524422736929682262
  • 86 : 5.99999984497103703565235500206
  • 87 : 5.99999987080919764938447871130
  • 88 : 5.99999989234099812093652084287
  • 89 : 5.99999991028416515396895975767
  • 90 : 5.99999992523680433043315027918
  • 91 : 5.99999993769733696566696999774
  • 92 : 5.99999994808111415381537150814
  • 93 : 5.99999995673426180535251837455
  • 94 : 5.99999996394521817813134894619
  • 95 : 5.99999996995434848644562432230
  • 96 : 5.99999997496195707515102040223
  • 97 : 5.99999997913496423136785042429
  • 98 : 5.99999998261247019419009763519
  • 99 : 5.99999998551039182941411843930
  • 100 : 5.99999998792532652512667897273
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
  • You roll $N$ dice simultaneously. Your score is the highest number rolled. If you play this game many times, what is the expected value (mean) of your score?
  • ## Input
  • - A positive integer $N$.
  • - Your code must work for inputs up to and including 10, but may crash or error for larger inputs.
  • ## Output
  • - The expected value (the mean value) of the highest individual dice result when $N$ dice are rolled simultaneously.
  • - For inputs up to and including 10, the output must be correct to 6 decimal places.
  • - If you provide more than 6 decimal places, the rest do not need to be correct.
  • *Note that this means that if you find an incorrect algorithm that happens to give the correct first 6 decimal places for inputs from 1 to 10, that is still a valid entry.*
  • ## Test cases
  • - Test cases are in the format `input : output`.
  • - Outputs are shown to 29 decimal places, but only the first 6 are required.
  • - Inputs are listed up to 100, but only the first 10 are required.
  • ```text
  • 1 : 3.50000000000000000000000000000
  • 2 : 4.47222222222222222222222222222
  • 3 : 4.95833333333333333333333333333
  • 4 : 5.24459876543209876543209876543
  • 5 : 5.43094135802469135802469135802
  • 6 : 5.56029235253772290809327846365
  • 7 : 5.65411736968449931412894375857
  • 8 : 5.72435425716354214296601127877
  • 9 : 5.77817697616598079561042524005
  • 10 : 5.82015937306834154685092042202
  • 11 : 5.85335706527894206506460735999
  • 12 : 5.87988997582530915943632501068
  • 13 : 5.90127519231210814088487715475
  • 14 : 5.91862670254239982137663865269
  • 15 : 5.93278028294863316396677461217
  • 16 : 5.94437438620726706763129530818
  • 17 : 5.95390415952465750681465958813
  • 18 : 5.96175850647834296160754452251
  • 19 : 5.96824613483573478052351165790
  • 20 : 5.97361426407447557663984765006
  • 21 : 5.97806232620687085074595293012
  • 22 : 5.98175217846144708662154353022
  • 23 : 5.98481583773702261975593217245
  • 24 : 5.98736142198727564742707212114
  • 25 : 5.98947777205805890939664416722
  • 26 : 5.99123808700442039912763192534
  • 27 : 5.99270281104071658824509961829
  • 28 : 5.99392194517515569233729905843
  • 29 : 5.99493691121505910010725938052
  • 30 : 5.99578206374053429687749343718
  • 31 : 5.99648592261006367516482569756
  • 32 : 5.99707218178527995084736694167
  • 33 : 5.99756053786868087649928650274
  • 34 : 5.99796737246493066079858958712
  • 35 : 5.99830631543055017861569950830
  • 36 : 5.99858871066207446521322300997
  • 37 : 5.99882400186341138245450681838
  • 38 : 5.99902005242648948549576095711
  • 39 : 5.99918341093743479553132394038
  • 40 : 5.99931953172456703574223466691
  • 41 : 5.99943295817706350108795983587
  • 42 : 5.99952747519634081538911322617
  • 43 : 5.99960623602945068095518442501
  • 44 : 5.99967186782397404767755480207
  • 45 : 5.99972655949737104393862636712
  • 46 : 5.99977213489940115923030314943
  • 47 : 5.99981011373944957989563752749
  • 48 : 5.99984176233172849189022933653
  • 49 : 5.99986813586456479870290813229
  • 50 : 5.99989011361255339407569498867
  • 51 : 5.99990842827184954870321285747
  • 52 : 5.99992369040080016589174296589
  • 53 : 5.99993640878350603044198445896
  • 54 : 5.99994700739703671894286363020
  • 55 : 5.99995583954916283311195393381
  • 56 : 5.99996319965872384717127603489
  • 57 : 5.99996933307188419526385210950
  • 58 : 5.99997444424186859925185882190
  • 59 : 5.99997870354508945667904295502
  • 60 : 5.99998225296104051857478470078
  • 61 : 5.99998521080539996849966854970
  • 62 : 5.99998767567418855349310233867
  • 63 : 5.99998972973050506993796648767
  • 64 : 5.99999144144343063073206840811
  • 65 : 5.99999286787042090723765344027
  • 66 : 5.99999405655928101044676381654
  • 67 : 5.99999504713313212275883242164
  • 68 : 5.99999587261120873388929359398
  • 69 : 5.99999656050951747707865703098
  • 70 : 5.99999713375804914123485643137
  • 71 : 5.99999761146511955791960329286
  • 72 : 5.99999800955431870285999319781
  • 73 : 5.99999834129530052211240888309
  • 74 : 5.99999861774610705935749422818
  • 75 : 5.99999884812177141008489719171
  • 76 : 5.99999904010148652659540160860
  • 77 : 5.99999920008457900651260250252
  • 78 : 5.99999933340382043943812434706
  • 79 : 5.99999944450318676665018476267
  • 80 : 5.99999953708599101695409676737
  • 81 : 5.99999961423832721062548685767
  • 82 : 5.99999967853194025096373203645
  • 83 : 5.99999973210995081498699422189
  • 84 : 5.99999977675829274972286241220
  • 85 : 5.99999981396524422736929682262
  • 86 : 5.99999984497103703565235500206
  • 87 : 5.99999987080919764938447871130
  • 88 : 5.99999989234099812093652084287
  • 89 : 5.99999991028416515396895975767
  • 90 : 5.99999992523680433043315027918
  • 91 : 5.99999993769733696566696999774
  • 92 : 5.99999994808111415381537150814
  • 93 : 5.99999995673426180535251837455
  • 94 : 5.99999996394521817813134894619
  • 95 : 5.99999996995434848644562432230
  • 96 : 5.99999997496195707515102040223
  • 97 : 5.99999997913496423136785042429
  • 98 : 5.99999998261247019419009763519
  • 99 : 5.99999998551039182941411843930
  • 100 : 5.99999998792532652512667897273
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
#3: Post edited by user avatar trichoplax‭ · 2023-07-02T00:06:28Z (over 1 year ago)
Refer to input as N
  • You roll N dice simultaneously. Your score is the highest number rolled. If you play this game many times, what is the expected value (mean) of your score?
  • ## Input
  • - A positive integer.
  • - Your code must work for inputs up to and including 10, but may crash or error for larger inputs.
  • ## Output
  • - The expected value (the mean value) of the highest individual dice result when N dice are rolled simultaneously.
  • - For inputs up to and including 10, the output must be correct to 6 decimal places.
  • - If you provide more than 6 decimal places, they do not need to be correct.
  • *Note that this means that if you find an incorrect algorithm that happens to give the correct first 6 decimal places for inputs from 1 to 10, that is still a valid entry.*
  • ## Test cases
  • - Test cases are in the format `input : output`.
  • - Outputs are shown to 29 decimal places, but only the first 6 are required.
  • - Inputs are listed up to 100, but only the first 10 are required.
  • ```text
  • 1 : 3.50000000000000000000000000000
  • 2 : 4.47222222222222222222222222222
  • 3 : 4.95833333333333333333333333333
  • 4 : 5.24459876543209876543209876543
  • 5 : 5.43094135802469135802469135802
  • 6 : 5.56029235253772290809327846365
  • 7 : 5.65411736968449931412894375857
  • 8 : 5.72435425716354214296601127877
  • 9 : 5.77817697616598079561042524005
  • 10 : 5.82015937306834154685092042202
  • 11 : 5.85335706527894206506460735999
  • 12 : 5.87988997582530915943632501068
  • 13 : 5.90127519231210814088487715475
  • 14 : 5.91862670254239982137663865269
  • 15 : 5.93278028294863316396677461217
  • 16 : 5.94437438620726706763129530818
  • 17 : 5.95390415952465750681465958813
  • 18 : 5.96175850647834296160754452251
  • 19 : 5.96824613483573478052351165790
  • 20 : 5.97361426407447557663984765006
  • 21 : 5.97806232620687085074595293012
  • 22 : 5.98175217846144708662154353022
  • 23 : 5.98481583773702261975593217245
  • 24 : 5.98736142198727564742707212114
  • 25 : 5.98947777205805890939664416722
  • 26 : 5.99123808700442039912763192534
  • 27 : 5.99270281104071658824509961829
  • 28 : 5.99392194517515569233729905843
  • 29 : 5.99493691121505910010725938052
  • 30 : 5.99578206374053429687749343718
  • 31 : 5.99648592261006367516482569756
  • 32 : 5.99707218178527995084736694167
  • 33 : 5.99756053786868087649928650274
  • 34 : 5.99796737246493066079858958712
  • 35 : 5.99830631543055017861569950830
  • 36 : 5.99858871066207446521322300997
  • 37 : 5.99882400186341138245450681838
  • 38 : 5.99902005242648948549576095711
  • 39 : 5.99918341093743479553132394038
  • 40 : 5.99931953172456703574223466691
  • 41 : 5.99943295817706350108795983587
  • 42 : 5.99952747519634081538911322617
  • 43 : 5.99960623602945068095518442501
  • 44 : 5.99967186782397404767755480207
  • 45 : 5.99972655949737104393862636712
  • 46 : 5.99977213489940115923030314943
  • 47 : 5.99981011373944957989563752749
  • 48 : 5.99984176233172849189022933653
  • 49 : 5.99986813586456479870290813229
  • 50 : 5.99989011361255339407569498867
  • 51 : 5.99990842827184954870321285747
  • 52 : 5.99992369040080016589174296589
  • 53 : 5.99993640878350603044198445896
  • 54 : 5.99994700739703671894286363020
  • 55 : 5.99995583954916283311195393381
  • 56 : 5.99996319965872384717127603489
  • 57 : 5.99996933307188419526385210950
  • 58 : 5.99997444424186859925185882190
  • 59 : 5.99997870354508945667904295502
  • 60 : 5.99998225296104051857478470078
  • 61 : 5.99998521080539996849966854970
  • 62 : 5.99998767567418855349310233867
  • 63 : 5.99998972973050506993796648767
  • 64 : 5.99999144144343063073206840811
  • 65 : 5.99999286787042090723765344027
  • 66 : 5.99999405655928101044676381654
  • 67 : 5.99999504713313212275883242164
  • 68 : 5.99999587261120873388929359398
  • 69 : 5.99999656050951747707865703098
  • 70 : 5.99999713375804914123485643137
  • 71 : 5.99999761146511955791960329286
  • 72 : 5.99999800955431870285999319781
  • 73 : 5.99999834129530052211240888309
  • 74 : 5.99999861774610705935749422818
  • 75 : 5.99999884812177141008489719171
  • 76 : 5.99999904010148652659540160860
  • 77 : 5.99999920008457900651260250252
  • 78 : 5.99999933340382043943812434706
  • 79 : 5.99999944450318676665018476267
  • 80 : 5.99999953708599101695409676737
  • 81 : 5.99999961423832721062548685767
  • 82 : 5.99999967853194025096373203645
  • 83 : 5.99999973210995081498699422189
  • 84 : 5.99999977675829274972286241220
  • 85 : 5.99999981396524422736929682262
  • 86 : 5.99999984497103703565235500206
  • 87 : 5.99999987080919764938447871130
  • 88 : 5.99999989234099812093652084287
  • 89 : 5.99999991028416515396895975767
  • 90 : 5.99999992523680433043315027918
  • 91 : 5.99999993769733696566696999774
  • 92 : 5.99999994808111415381537150814
  • 93 : 5.99999995673426180535251837455
  • 94 : 5.99999996394521817813134894619
  • 95 : 5.99999996995434848644562432230
  • 96 : 5.99999997496195707515102040223
  • 97 : 5.99999997913496423136785042429
  • 98 : 5.99999998261247019419009763519
  • 99 : 5.99999998551039182941411843930
  • 100 : 5.99999998792532652512667897273
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
  • You roll $N$ dice simultaneously. Your score is the highest number rolled. If you play this game many times, what is the expected value (mean) of your score?
  • ## Input
  • - A positive integer $N$.
  • - Your code must work for inputs up to and including 10, but may crash or error for larger inputs.
  • ## Output
  • - The expected value (the mean value) of the highest individual dice result when $N$ dice are rolled simultaneously.
  • - For inputs up to and including 10, the output must be correct to 6 decimal places.
  • - If you provide more than 6 decimal places, they do not need to be correct.
  • *Note that this means that if you find an incorrect algorithm that happens to give the correct first 6 decimal places for inputs from 1 to 10, that is still a valid entry.*
  • ## Test cases
  • - Test cases are in the format `input : output`.
  • - Outputs are shown to 29 decimal places, but only the first 6 are required.
  • - Inputs are listed up to 100, but only the first 10 are required.
  • ```text
  • 1 : 3.50000000000000000000000000000
  • 2 : 4.47222222222222222222222222222
  • 3 : 4.95833333333333333333333333333
  • 4 : 5.24459876543209876543209876543
  • 5 : 5.43094135802469135802469135802
  • 6 : 5.56029235253772290809327846365
  • 7 : 5.65411736968449931412894375857
  • 8 : 5.72435425716354214296601127877
  • 9 : 5.77817697616598079561042524005
  • 10 : 5.82015937306834154685092042202
  • 11 : 5.85335706527894206506460735999
  • 12 : 5.87988997582530915943632501068
  • 13 : 5.90127519231210814088487715475
  • 14 : 5.91862670254239982137663865269
  • 15 : 5.93278028294863316396677461217
  • 16 : 5.94437438620726706763129530818
  • 17 : 5.95390415952465750681465958813
  • 18 : 5.96175850647834296160754452251
  • 19 : 5.96824613483573478052351165790
  • 20 : 5.97361426407447557663984765006
  • 21 : 5.97806232620687085074595293012
  • 22 : 5.98175217846144708662154353022
  • 23 : 5.98481583773702261975593217245
  • 24 : 5.98736142198727564742707212114
  • 25 : 5.98947777205805890939664416722
  • 26 : 5.99123808700442039912763192534
  • 27 : 5.99270281104071658824509961829
  • 28 : 5.99392194517515569233729905843
  • 29 : 5.99493691121505910010725938052
  • 30 : 5.99578206374053429687749343718
  • 31 : 5.99648592261006367516482569756
  • 32 : 5.99707218178527995084736694167
  • 33 : 5.99756053786868087649928650274
  • 34 : 5.99796737246493066079858958712
  • 35 : 5.99830631543055017861569950830
  • 36 : 5.99858871066207446521322300997
  • 37 : 5.99882400186341138245450681838
  • 38 : 5.99902005242648948549576095711
  • 39 : 5.99918341093743479553132394038
  • 40 : 5.99931953172456703574223466691
  • 41 : 5.99943295817706350108795983587
  • 42 : 5.99952747519634081538911322617
  • 43 : 5.99960623602945068095518442501
  • 44 : 5.99967186782397404767755480207
  • 45 : 5.99972655949737104393862636712
  • 46 : 5.99977213489940115923030314943
  • 47 : 5.99981011373944957989563752749
  • 48 : 5.99984176233172849189022933653
  • 49 : 5.99986813586456479870290813229
  • 50 : 5.99989011361255339407569498867
  • 51 : 5.99990842827184954870321285747
  • 52 : 5.99992369040080016589174296589
  • 53 : 5.99993640878350603044198445896
  • 54 : 5.99994700739703671894286363020
  • 55 : 5.99995583954916283311195393381
  • 56 : 5.99996319965872384717127603489
  • 57 : 5.99996933307188419526385210950
  • 58 : 5.99997444424186859925185882190
  • 59 : 5.99997870354508945667904295502
  • 60 : 5.99998225296104051857478470078
  • 61 : 5.99998521080539996849966854970
  • 62 : 5.99998767567418855349310233867
  • 63 : 5.99998972973050506993796648767
  • 64 : 5.99999144144343063073206840811
  • 65 : 5.99999286787042090723765344027
  • 66 : 5.99999405655928101044676381654
  • 67 : 5.99999504713313212275883242164
  • 68 : 5.99999587261120873388929359398
  • 69 : 5.99999656050951747707865703098
  • 70 : 5.99999713375804914123485643137
  • 71 : 5.99999761146511955791960329286
  • 72 : 5.99999800955431870285999319781
  • 73 : 5.99999834129530052211240888309
  • 74 : 5.99999861774610705935749422818
  • 75 : 5.99999884812177141008489719171
  • 76 : 5.99999904010148652659540160860
  • 77 : 5.99999920008457900651260250252
  • 78 : 5.99999933340382043943812434706
  • 79 : 5.99999944450318676665018476267
  • 80 : 5.99999953708599101695409676737
  • 81 : 5.99999961423832721062548685767
  • 82 : 5.99999967853194025096373203645
  • 83 : 5.99999973210995081498699422189
  • 84 : 5.99999977675829274972286241220
  • 85 : 5.99999981396524422736929682262
  • 86 : 5.99999984497103703565235500206
  • 87 : 5.99999987080919764938447871130
  • 88 : 5.99999989234099812093652084287
  • 89 : 5.99999991028416515396895975767
  • 90 : 5.99999992523680433043315027918
  • 91 : 5.99999993769733696566696999774
  • 92 : 5.99999994808111415381537150814
  • 93 : 5.99999995673426180535251837455
  • 94 : 5.99999996394521817813134894619
  • 95 : 5.99999996995434848644562432230
  • 96 : 5.99999997496195707515102040223
  • 97 : 5.99999997913496423136785042429
  • 98 : 5.99999998261247019419009763519
  • 99 : 5.99999998551039182941411843930
  • 100 : 5.99999998792532652512667897273
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
#2: Post edited by user avatar trichoplax‭ · 2023-07-02T00:02:23Z (over 1 year ago)
Explicitly allow incorrect algorithms
  • You roll N dice simultaneously. Your score is the highest number rolled. If you play this game many times, what is the expected value (mean) of your score?
  • ## Input
  • - A positive integer.
  • - Your code must work for inputs up to and including 10, but may crash or error for larger inputs.
  • ## Output
  • - The expected value (the mean value) of the dice result which is highest when N dice are rolled simultaneously.
  • - For inputs up to and including 10, the output must be correct to 6 decimal places.
  • - If you provide more than 6 decimal places, they do not need to be correct.
  • ## Test cases
  • - Test cases are in the format `input : output`.
  • - Outputs are shown to 29 decimal places, but only the first 6 are required.
  • - Inputs are listed up to 100, but only the first 10 are required.
  • ```text
  • 1 : 3.50000000000000000000000000000
  • 2 : 4.47222222222222222222222222222
  • 3 : 4.95833333333333333333333333333
  • 4 : 5.24459876543209876543209876543
  • 5 : 5.43094135802469135802469135802
  • 6 : 5.56029235253772290809327846365
  • 7 : 5.65411736968449931412894375857
  • 8 : 5.72435425716354214296601127877
  • 9 : 5.77817697616598079561042524005
  • 10 : 5.82015937306834154685092042202
  • 11 : 5.85335706527894206506460735999
  • 12 : 5.87988997582530915943632501068
  • 13 : 5.90127519231210814088487715475
  • 14 : 5.91862670254239982137663865269
  • 15 : 5.93278028294863316396677461217
  • 16 : 5.94437438620726706763129530818
  • 17 : 5.95390415952465750681465958813
  • 18 : 5.96175850647834296160754452251
  • 19 : 5.96824613483573478052351165790
  • 20 : 5.97361426407447557663984765006
  • 21 : 5.97806232620687085074595293012
  • 22 : 5.98175217846144708662154353022
  • 23 : 5.98481583773702261975593217245
  • 24 : 5.98736142198727564742707212114
  • 25 : 5.98947777205805890939664416722
  • 26 : 5.99123808700442039912763192534
  • 27 : 5.99270281104071658824509961829
  • 28 : 5.99392194517515569233729905843
  • 29 : 5.99493691121505910010725938052
  • 30 : 5.99578206374053429687749343718
  • 31 : 5.99648592261006367516482569756
  • 32 : 5.99707218178527995084736694167
  • 33 : 5.99756053786868087649928650274
  • 34 : 5.99796737246493066079858958712
  • 35 : 5.99830631543055017861569950830
  • 36 : 5.99858871066207446521322300997
  • 37 : 5.99882400186341138245450681838
  • 38 : 5.99902005242648948549576095711
  • 39 : 5.99918341093743479553132394038
  • 40 : 5.99931953172456703574223466691
  • 41 : 5.99943295817706350108795983587
  • 42 : 5.99952747519634081538911322617
  • 43 : 5.99960623602945068095518442501
  • 44 : 5.99967186782397404767755480207
  • 45 : 5.99972655949737104393862636712
  • 46 : 5.99977213489940115923030314943
  • 47 : 5.99981011373944957989563752749
  • 48 : 5.99984176233172849189022933653
  • 49 : 5.99986813586456479870290813229
  • 50 : 5.99989011361255339407569498867
  • 51 : 5.99990842827184954870321285747
  • 52 : 5.99992369040080016589174296589
  • 53 : 5.99993640878350603044198445896
  • 54 : 5.99994700739703671894286363020
  • 55 : 5.99995583954916283311195393381
  • 56 : 5.99996319965872384717127603489
  • 57 : 5.99996933307188419526385210950
  • 58 : 5.99997444424186859925185882190
  • 59 : 5.99997870354508945667904295502
  • 60 : 5.99998225296104051857478470078
  • 61 : 5.99998521080539996849966854970
  • 62 : 5.99998767567418855349310233867
  • 63 : 5.99998972973050506993796648767
  • 64 : 5.99999144144343063073206840811
  • 65 : 5.99999286787042090723765344027
  • 66 : 5.99999405655928101044676381654
  • 67 : 5.99999504713313212275883242164
  • 68 : 5.99999587261120873388929359398
  • 69 : 5.99999656050951747707865703098
  • 70 : 5.99999713375804914123485643137
  • 71 : 5.99999761146511955791960329286
  • 72 : 5.99999800955431870285999319781
  • 73 : 5.99999834129530052211240888309
  • 74 : 5.99999861774610705935749422818
  • 75 : 5.99999884812177141008489719171
  • 76 : 5.99999904010148652659540160860
  • 77 : 5.99999920008457900651260250252
  • 78 : 5.99999933340382043943812434706
  • 79 : 5.99999944450318676665018476267
  • 80 : 5.99999953708599101695409676737
  • 81 : 5.99999961423832721062548685767
  • 82 : 5.99999967853194025096373203645
  • 83 : 5.99999973210995081498699422189
  • 84 : 5.99999977675829274972286241220
  • 85 : 5.99999981396524422736929682262
  • 86 : 5.99999984497103703565235500206
  • 87 : 5.99999987080919764938447871130
  • 88 : 5.99999989234099812093652084287
  • 89 : 5.99999991028416515396895975767
  • 90 : 5.99999992523680433043315027918
  • 91 : 5.99999993769733696566696999774
  • 92 : 5.99999994808111415381537150814
  • 93 : 5.99999995673426180535251837455
  • 94 : 5.99999996394521817813134894619
  • 95 : 5.99999996995434848644562432230
  • 96 : 5.99999997496195707515102040223
  • 97 : 5.99999997913496423136785042429
  • 98 : 5.99999998261247019419009763519
  • 99 : 5.99999998551039182941411843930
  • 100 : 5.99999998792532652512667897273
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
  • You roll N dice simultaneously. Your score is the highest number rolled. If you play this game many times, what is the expected value (mean) of your score?
  • ## Input
  • - A positive integer.
  • - Your code must work for inputs up to and including 10, but may crash or error for larger inputs.
  • ## Output
  • - The expected value (the mean value) of the highest individual dice result when N dice are rolled simultaneously.
  • - For inputs up to and including 10, the output must be correct to 6 decimal places.
  • - If you provide more than 6 decimal places, they do not need to be correct.
  • *Note that this means that if you find an incorrect algorithm that happens to give the correct first 6 decimal places for inputs from 1 to 10, that is still a valid entry.*
  • ## Test cases
  • - Test cases are in the format `input : output`.
  • - Outputs are shown to 29 decimal places, but only the first 6 are required.
  • - Inputs are listed up to 100, but only the first 10 are required.
  • ```text
  • 1 : 3.50000000000000000000000000000
  • 2 : 4.47222222222222222222222222222
  • 3 : 4.95833333333333333333333333333
  • 4 : 5.24459876543209876543209876543
  • 5 : 5.43094135802469135802469135802
  • 6 : 5.56029235253772290809327846365
  • 7 : 5.65411736968449931412894375857
  • 8 : 5.72435425716354214296601127877
  • 9 : 5.77817697616598079561042524005
  • 10 : 5.82015937306834154685092042202
  • 11 : 5.85335706527894206506460735999
  • 12 : 5.87988997582530915943632501068
  • 13 : 5.90127519231210814088487715475
  • 14 : 5.91862670254239982137663865269
  • 15 : 5.93278028294863316396677461217
  • 16 : 5.94437438620726706763129530818
  • 17 : 5.95390415952465750681465958813
  • 18 : 5.96175850647834296160754452251
  • 19 : 5.96824613483573478052351165790
  • 20 : 5.97361426407447557663984765006
  • 21 : 5.97806232620687085074595293012
  • 22 : 5.98175217846144708662154353022
  • 23 : 5.98481583773702261975593217245
  • 24 : 5.98736142198727564742707212114
  • 25 : 5.98947777205805890939664416722
  • 26 : 5.99123808700442039912763192534
  • 27 : 5.99270281104071658824509961829
  • 28 : 5.99392194517515569233729905843
  • 29 : 5.99493691121505910010725938052
  • 30 : 5.99578206374053429687749343718
  • 31 : 5.99648592261006367516482569756
  • 32 : 5.99707218178527995084736694167
  • 33 : 5.99756053786868087649928650274
  • 34 : 5.99796737246493066079858958712
  • 35 : 5.99830631543055017861569950830
  • 36 : 5.99858871066207446521322300997
  • 37 : 5.99882400186341138245450681838
  • 38 : 5.99902005242648948549576095711
  • 39 : 5.99918341093743479553132394038
  • 40 : 5.99931953172456703574223466691
  • 41 : 5.99943295817706350108795983587
  • 42 : 5.99952747519634081538911322617
  • 43 : 5.99960623602945068095518442501
  • 44 : 5.99967186782397404767755480207
  • 45 : 5.99972655949737104393862636712
  • 46 : 5.99977213489940115923030314943
  • 47 : 5.99981011373944957989563752749
  • 48 : 5.99984176233172849189022933653
  • 49 : 5.99986813586456479870290813229
  • 50 : 5.99989011361255339407569498867
  • 51 : 5.99990842827184954870321285747
  • 52 : 5.99992369040080016589174296589
  • 53 : 5.99993640878350603044198445896
  • 54 : 5.99994700739703671894286363020
  • 55 : 5.99995583954916283311195393381
  • 56 : 5.99996319965872384717127603489
  • 57 : 5.99996933307188419526385210950
  • 58 : 5.99997444424186859925185882190
  • 59 : 5.99997870354508945667904295502
  • 60 : 5.99998225296104051857478470078
  • 61 : 5.99998521080539996849966854970
  • 62 : 5.99998767567418855349310233867
  • 63 : 5.99998972973050506993796648767
  • 64 : 5.99999144144343063073206840811
  • 65 : 5.99999286787042090723765344027
  • 66 : 5.99999405655928101044676381654
  • 67 : 5.99999504713313212275883242164
  • 68 : 5.99999587261120873388929359398
  • 69 : 5.99999656050951747707865703098
  • 70 : 5.99999713375804914123485643137
  • 71 : 5.99999761146511955791960329286
  • 72 : 5.99999800955431870285999319781
  • 73 : 5.99999834129530052211240888309
  • 74 : 5.99999861774610705935749422818
  • 75 : 5.99999884812177141008489719171
  • 76 : 5.99999904010148652659540160860
  • 77 : 5.99999920008457900651260250252
  • 78 : 5.99999933340382043943812434706
  • 79 : 5.99999944450318676665018476267
  • 80 : 5.99999953708599101695409676737
  • 81 : 5.99999961423832721062548685767
  • 82 : 5.99999967853194025096373203645
  • 83 : 5.99999973210995081498699422189
  • 84 : 5.99999977675829274972286241220
  • 85 : 5.99999981396524422736929682262
  • 86 : 5.99999984497103703565235500206
  • 87 : 5.99999987080919764938447871130
  • 88 : 5.99999989234099812093652084287
  • 89 : 5.99999991028416515396895975767
  • 90 : 5.99999992523680433043315027918
  • 91 : 5.99999993769733696566696999774
  • 92 : 5.99999994808111415381537150814
  • 93 : 5.99999995673426180535251837455
  • 94 : 5.99999996394521817813134894619
  • 95 : 5.99999996995434848644562432230
  • 96 : 5.99999997496195707515102040223
  • 97 : 5.99999997913496423136785042429
  • 98 : 5.99999998261247019419009763519
  • 99 : 5.99999998551039182941411843930
  • 100 : 5.99999998792532652512667897273
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
#1: Initial revision by user avatar trichoplax‭ · 2023-07-01T18:31:26Z (over 1 year ago)
Expected value of highest dice rolled
You roll N dice simultaneously. Your score is the highest number rolled. If you play this game many times, what is the expected value (mean) of your score?

## Input
- A positive integer.
- Your code must work for inputs up to and including 10, but may crash or error for larger inputs.

## Output
- The expected value (the mean value) of the dice result which is highest when N dice are rolled simultaneously.
- For inputs up to and including 10, the output must be correct to 6 decimal places.
- If you provide more than 6 decimal places, they do not need to be correct.

## Test cases
- Test cases are in the format `input : output`.
- Outputs are shown to 29 decimal places, but only the first 6 are required.
- Inputs are listed up to 100, but only the first 10 are required.

```text
1 : 3.50000000000000000000000000000
2 : 4.47222222222222222222222222222
3 : 4.95833333333333333333333333333
4 : 5.24459876543209876543209876543
5 : 5.43094135802469135802469135802
6 : 5.56029235253772290809327846365
7 : 5.65411736968449931412894375857
8 : 5.72435425716354214296601127877
9 : 5.77817697616598079561042524005
10 : 5.82015937306834154685092042202
11 : 5.85335706527894206506460735999
12 : 5.87988997582530915943632501068
13 : 5.90127519231210814088487715475
14 : 5.91862670254239982137663865269
15 : 5.93278028294863316396677461217
16 : 5.94437438620726706763129530818
17 : 5.95390415952465750681465958813
18 : 5.96175850647834296160754452251
19 : 5.96824613483573478052351165790
20 : 5.97361426407447557663984765006
21 : 5.97806232620687085074595293012
22 : 5.98175217846144708662154353022
23 : 5.98481583773702261975593217245
24 : 5.98736142198727564742707212114
25 : 5.98947777205805890939664416722
26 : 5.99123808700442039912763192534
27 : 5.99270281104071658824509961829
28 : 5.99392194517515569233729905843
29 : 5.99493691121505910010725938052
30 : 5.99578206374053429687749343718
31 : 5.99648592261006367516482569756
32 : 5.99707218178527995084736694167
33 : 5.99756053786868087649928650274
34 : 5.99796737246493066079858958712
35 : 5.99830631543055017861569950830
36 : 5.99858871066207446521322300997
37 : 5.99882400186341138245450681838
38 : 5.99902005242648948549576095711
39 : 5.99918341093743479553132394038
40 : 5.99931953172456703574223466691
41 : 5.99943295817706350108795983587
42 : 5.99952747519634081538911322617
43 : 5.99960623602945068095518442501
44 : 5.99967186782397404767755480207
45 : 5.99972655949737104393862636712
46 : 5.99977213489940115923030314943
47 : 5.99981011373944957989563752749
48 : 5.99984176233172849189022933653
49 : 5.99986813586456479870290813229
50 : 5.99989011361255339407569498867
51 : 5.99990842827184954870321285747
52 : 5.99992369040080016589174296589
53 : 5.99993640878350603044198445896
54 : 5.99994700739703671894286363020
55 : 5.99995583954916283311195393381
56 : 5.99996319965872384717127603489
57 : 5.99996933307188419526385210950
58 : 5.99997444424186859925185882190
59 : 5.99997870354508945667904295502
60 : 5.99998225296104051857478470078
61 : 5.99998521080539996849966854970
62 : 5.99998767567418855349310233867
63 : 5.99998972973050506993796648767
64 : 5.99999144144343063073206840811
65 : 5.99999286787042090723765344027
66 : 5.99999405655928101044676381654
67 : 5.99999504713313212275883242164
68 : 5.99999587261120873388929359398
69 : 5.99999656050951747707865703098
70 : 5.99999713375804914123485643137
71 : 5.99999761146511955791960329286
72 : 5.99999800955431870285999319781
73 : 5.99999834129530052211240888309
74 : 5.99999861774610705935749422818
75 : 5.99999884812177141008489719171
76 : 5.99999904010148652659540160860
77 : 5.99999920008457900651260250252
78 : 5.99999933340382043943812434706
79 : 5.99999944450318676665018476267
80 : 5.99999953708599101695409676737
81 : 5.99999961423832721062548685767
82 : 5.99999967853194025096373203645
83 : 5.99999973210995081498699422189
84 : 5.99999977675829274972286241220
85 : 5.99999981396524422736929682262
86 : 5.99999984497103703565235500206
87 : 5.99999987080919764938447871130
88 : 5.99999989234099812093652084287
89 : 5.99999991028416515396895975767
90 : 5.99999992523680433043315027918
91 : 5.99999993769733696566696999774
92 : 5.99999994808111415381537150814
93 : 5.99999995673426180535251837455
94 : 5.99999996394521817813134894619
95 : 5.99999996995434848644562432230
96 : 5.99999997496195707515102040223
97 : 5.99999997913496423136785042429
98 : 5.99999998261247019419009763519
99 : 5.99999998551039182941411843930
100 : 5.99999998792532652512667897273
```

## Scoring
This is a [code golf challenge]. Your score is the number of bytes in your code.

> Explanations are optional, but I'm more likely to upvote answers that have one.



[code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"