Communities

Writing
Writing
Codidact Meta
Codidact Meta
The Great Outdoors
The Great Outdoors
Photography & Video
Photography & Video
Scientific Speculation
Scientific Speculation
Cooking
Cooking
Electrical Engineering
Electrical Engineering
Judaism
Judaism
Languages & Linguistics
Languages & Linguistics
Software Development
Software Development
Mathematics
Mathematics
Christianity
Christianity
Code Golf
Code Golf
Music
Music
Physics
Physics
Linux Systems
Linux Systems
Power Users
Power Users
Tabletop RPGs
Tabletop RPGs
Community Proposals
Community Proposals
tag:snake search within a tag
answers:0 unanswered questions
user:xxxx search by author id
score:0.5 posts with 0.5+ score
"snake oil" exact phrase
votes:4 posts with 4+ votes
created:<1w created < 1 week ago
post_type:xxxx type of post
Search help
Notifications
Mark all as read See all your notifications »
Challenges

Post History

66%
+2 −0
Challenges Borromean coprimes

Given 3 positive integers, indicate whether they are Borromean coprimes. Definition 3 positive integers are called Borromean coprimes if both of the following are true: Their greatest common d...

2 answers  ·  posted 1y ago by trichoplax‭  ·  last activity 12mo ago by NikNakk‭

Question code-golf math
#2: Post edited by user avatar trichoplax‭ · 2023-10-08T07:46:52Z (about 1 year ago)
Link to definition of coprime for more than 2 numbers
  • Given 3 positive integers, indicate whether they are Borromean coprimes.
  • ## Definition
  • 3 positive integers are called ***Borromean coprimes*** if both of the following are true:
  • - Their greatest common divisor is 1.
  • - The greatest common divisor of every pair is greater than 1.
  • In summary, the triple of integers is coprime, but removing any single integer leaves a pair of integers that are not coprime. The name is by analogy with [Borromean rings](https://en.m.wikipedia.org/wiki/Borromean_rings).
  • ## Input
  • - 3 positive integers.
  • - This may be as 3 separate inputs, or any ordered data structure.
  • - Your code must work for integers in any order (you must not assume that they are sorted).
  • - Your code must support input integers up to and including 127.
  • ## Output
  • - 1 of 2 distinct values to represent "True" and "False".
  • ## Examples
  • ### GCD not equal to 1 for the triple
  • - Input: `2, 4, 6`
  • - Output: `False`
  • The greatest common divisor of the triple is 2, so these are not Borromean coprimes.
  • ### GCD equal to 1 for a pair
  • - Input: `2, 3, 5`
  • - Output: `False`
  • The greatest common divisor of the pair `2, 3` is 1, so these are not Borromean coprimes.
  • ### Borromean coprimes
  • - Input: `6, 10, 15`
  • - Output: `True`
  • The greatest common divisors of each pair are:
  • - GCD(6, 10) = 2
  • - GCD(6, 15) = 3
  • - GCD(10, 15) = 5
  • The greatest common divisor of the triple is 1, and the greatest common divisor of every pair is greater than 1, so these are Borromean coprimes.
  • ## Non-golfed example code
  • Here is some Python code that meets the requirements of this challenge. The function `borromean_coprimes` returns `True` or `False`.
  • ```python
  • from math import gcd
  • def borromean_coprimes(x, y, z):
  • return (
  • coprime_triple(x, y, z)
  • and not coprime(x, y)
  • and not coprime(x, z)
  • and not coprime(y, z)
  • )
  • def coprime(x, y):
  • return gcd(x, y) == 1
  • def coprime_triple(x, y, z):
  • return gcd(x, y, z) == 1
  • ```
  • ## Test cases
  • Test cases are in the format `comma, separated, inputs : "output"`.
  • You may use any 2 distinct values instead of "True" and "False".
  • ```text
  • 1, 1, 1 : "False"
  • 1, 1, 2 : "False"
  • 1, 1, 3 : "False"
  • 1, 2, 2 : "False"
  • 1, 2, 3 : "False"
  • 2, 2, 2 : "False"
  • 2, 2, 3 : "False"
  • 2, 3, 3 : "False"
  • 2, 3, 4 : "False"
  • 2, 3, 5 : "False"
  • 2, 4, 5 : "False"
  • 2, 4, 6 : "False"
  • 127, 127, 127: "False"
  • 18, 33, 88 : "True"
  • 108, 20, 105 : "True"
  • 98, 30, 105 : "True"
  • 22, 36, 33 : "True"
  • 82, 30, 123 : "True"
  • 40, 55, 22 : "True"
  • 45, 12, 10 : "True"
  • 38, 57, 78 : "True"
  • 35, 84, 80 : "True"
  • 84, 33, 22 : "True"
  • 105, 54, 80 : "True"
  • 26, 96, 39 : "True"
  • 18, 26, 117 : "True"
  • 50, 75, 48 : "True"
  • 95, 76, 70 : "True"
  • 50, 96, 45 : "True"
  • 85, 34, 40 : "True"
  • 84, 104, 39 : "True"
  • 45, 72, 110 : "True"
  • 72, 68, 51 : "True"
  • 20, 105, 28 : "True"
  • 75, 102, 100 : "True"
  • 90, 105, 14 : "True"
  • 105, 110, 84 : "True"
  • 78, 70, 21 : "True"
  • 105, 96, 14 : "True"
  • 110, 120, 33 : "True"
  • 70, 84, 15 : "True"
  • 50, 6, 105 : "True"
  • 70, 21, 45 : "True"
  • 48, 70, 21 : "True"
  • 76, 18, 57 : "True"
  • 126, 77, 66 : "True"
  • 6, 88, 99 : "True"
  • 33, 77, 126 : "True"
  • 88, 72, 33 : "True"
  • 12, 63, 56 : "True"
  • 80, 36, 105 : "True"
  • 35, 110, 77 : "True"
  • 21, 14, 18 : "True"
  • 68, 85, 70 : "True"
  • 75, 108, 80 : "True"
  • 18, 21, 98 : "True"
  • 26, 36, 39 : "True"
  • 30, 98, 21 : "True"
  • 50, 15, 36 : "True"
  • 78, 51, 34 : "True"
  • 44, 98, 77 : "True"
  • 114, 105, 80 : "True"
  • 15, 10, 72 : "True"
  • 5, 91, 18 : "False"
  • 51, 41, 98 : "False"
  • 66, 78, 20 : "False"
  • 76, 18, 50 : "False"
  • 124, 105, 50 : "False"
  • 54, 1, 93 : "False"
  • 60, 41, 104 : "False"
  • 127, 62, 40 : "False"
  • 112, 101, 122 : "False"
  • 7, 12, 74 : "False"
  • 18, 95, 71 : "False"
  • 123, 74, 3 : "False"
  • 51, 79, 7 : "False"
  • 9, 67, 98 : "False"
  • 37, 6, 90 : "False"
  • 43, 1, 45 : "False"
  • 36, 14, 44 : "False"
  • 37, 1, 111 : "False"
  • 55, 89, 26 : "False"
  • 90, 53, 28 : "False"
  • 83, 12, 31 : "False"
  • 19, 112, 5 : "False"
  • 92, 19, 99 : "False"
  • 58, 59, 124 : "False"
  • 9, 106, 85 : "False"
  • 108, 108, 6 : "False"
  • 69, 31, 76 : "False"
  • 96, 6, 42 : "False"
  • 105, 47, 90 : "False"
  • 43, 22, 29 : "False"
  • 113, 19, 73 : "False"
  • 77, 103, 113 : "False"
  • 91, 89, 17 : "False"
  • 60, 16, 61 : "False"
  • 44, 87, 115 : "False"
  • 28, 80, 108 : "False"
  • 11, 116, 76 : "False"
  • 105, 79, 95 : "False"
  • 62, 80, 80 : "False"
  • 7, 60, 104 : "False"
  • 91, 106, 34 : "False"
  • 125, 105, 56 : "False"
  • 9, 74, 87 : "False"
  • 88, 68, 6 : "False"
  • 40, 17, 109 : "False"
  • 116, 83, 29 : "False"
  • 102, 32, 110 : "False"
  • 121, 20, 85 : "False"
  • 112, 44, 121 : "False"
  • 74, 102, 39 : "False"
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
  • Given 3 positive integers, indicate whether they are Borromean coprimes.
  • ## Definition
  • 3 positive integers are called ***Borromean coprimes*** if both of the following are true:
  • - Their greatest common divisor is 1.
  • - The greatest common divisor of every pair is greater than 1.
  • In summary, the triple of integers is [coprime](https://en.m.wikipedia.org/wiki/Coprime_integers#Coprimality_in_sets), but removing any single integer leaves a pair of integers that are not coprime. The name is by analogy with [Borromean rings](https://en.m.wikipedia.org/wiki/Borromean_rings).
  • ## Input
  • - 3 positive integers.
  • - This may be as 3 separate inputs, or any ordered data structure.
  • - Your code must work for integers in any order (you must not assume that they are sorted).
  • - Your code must support input integers up to and including 127.
  • ## Output
  • - 1 of 2 distinct values to represent "True" and "False".
  • ## Examples
  • ### GCD not equal to 1 for the triple
  • - Input: `2, 4, 6`
  • - Output: `False`
  • The greatest common divisor of the triple is 2, so these are not Borromean coprimes.
  • ### GCD equal to 1 for a pair
  • - Input: `2, 3, 5`
  • - Output: `False`
  • The greatest common divisor of the pair `2, 3` is 1, so these are not Borromean coprimes.
  • ### Borromean coprimes
  • - Input: `6, 10, 15`
  • - Output: `True`
  • The greatest common divisors of each pair are:
  • - GCD(6, 10) = 2
  • - GCD(6, 15) = 3
  • - GCD(10, 15) = 5
  • The greatest common divisor of the triple is 1, and the greatest common divisor of every pair is greater than 1, so these are Borromean coprimes.
  • ## Non-golfed example code
  • Here is some Python code that meets the requirements of this challenge. The function `borromean_coprimes` returns `True` or `False`.
  • ```python
  • from math import gcd
  • def borromean_coprimes(x, y, z):
  • return (
  • coprime_triple(x, y, z)
  • and not coprime(x, y)
  • and not coprime(x, z)
  • and not coprime(y, z)
  • )
  • def coprime(x, y):
  • return gcd(x, y) == 1
  • def coprime_triple(x, y, z):
  • return gcd(x, y, z) == 1
  • ```
  • ## Test cases
  • Test cases are in the format `comma, separated, inputs : "output"`.
  • You may use any 2 distinct values instead of "True" and "False".
  • ```text
  • 1, 1, 1 : "False"
  • 1, 1, 2 : "False"
  • 1, 1, 3 : "False"
  • 1, 2, 2 : "False"
  • 1, 2, 3 : "False"
  • 2, 2, 2 : "False"
  • 2, 2, 3 : "False"
  • 2, 3, 3 : "False"
  • 2, 3, 4 : "False"
  • 2, 3, 5 : "False"
  • 2, 4, 5 : "False"
  • 2, 4, 6 : "False"
  • 127, 127, 127: "False"
  • 18, 33, 88 : "True"
  • 108, 20, 105 : "True"
  • 98, 30, 105 : "True"
  • 22, 36, 33 : "True"
  • 82, 30, 123 : "True"
  • 40, 55, 22 : "True"
  • 45, 12, 10 : "True"
  • 38, 57, 78 : "True"
  • 35, 84, 80 : "True"
  • 84, 33, 22 : "True"
  • 105, 54, 80 : "True"
  • 26, 96, 39 : "True"
  • 18, 26, 117 : "True"
  • 50, 75, 48 : "True"
  • 95, 76, 70 : "True"
  • 50, 96, 45 : "True"
  • 85, 34, 40 : "True"
  • 84, 104, 39 : "True"
  • 45, 72, 110 : "True"
  • 72, 68, 51 : "True"
  • 20, 105, 28 : "True"
  • 75, 102, 100 : "True"
  • 90, 105, 14 : "True"
  • 105, 110, 84 : "True"
  • 78, 70, 21 : "True"
  • 105, 96, 14 : "True"
  • 110, 120, 33 : "True"
  • 70, 84, 15 : "True"
  • 50, 6, 105 : "True"
  • 70, 21, 45 : "True"
  • 48, 70, 21 : "True"
  • 76, 18, 57 : "True"
  • 126, 77, 66 : "True"
  • 6, 88, 99 : "True"
  • 33, 77, 126 : "True"
  • 88, 72, 33 : "True"
  • 12, 63, 56 : "True"
  • 80, 36, 105 : "True"
  • 35, 110, 77 : "True"
  • 21, 14, 18 : "True"
  • 68, 85, 70 : "True"
  • 75, 108, 80 : "True"
  • 18, 21, 98 : "True"
  • 26, 36, 39 : "True"
  • 30, 98, 21 : "True"
  • 50, 15, 36 : "True"
  • 78, 51, 34 : "True"
  • 44, 98, 77 : "True"
  • 114, 105, 80 : "True"
  • 15, 10, 72 : "True"
  • 5, 91, 18 : "False"
  • 51, 41, 98 : "False"
  • 66, 78, 20 : "False"
  • 76, 18, 50 : "False"
  • 124, 105, 50 : "False"
  • 54, 1, 93 : "False"
  • 60, 41, 104 : "False"
  • 127, 62, 40 : "False"
  • 112, 101, 122 : "False"
  • 7, 12, 74 : "False"
  • 18, 95, 71 : "False"
  • 123, 74, 3 : "False"
  • 51, 79, 7 : "False"
  • 9, 67, 98 : "False"
  • 37, 6, 90 : "False"
  • 43, 1, 45 : "False"
  • 36, 14, 44 : "False"
  • 37, 1, 111 : "False"
  • 55, 89, 26 : "False"
  • 90, 53, 28 : "False"
  • 83, 12, 31 : "False"
  • 19, 112, 5 : "False"
  • 92, 19, 99 : "False"
  • 58, 59, 124 : "False"
  • 9, 106, 85 : "False"
  • 108, 108, 6 : "False"
  • 69, 31, 76 : "False"
  • 96, 6, 42 : "False"
  • 105, 47, 90 : "False"
  • 43, 22, 29 : "False"
  • 113, 19, 73 : "False"
  • 77, 103, 113 : "False"
  • 91, 89, 17 : "False"
  • 60, 16, 61 : "False"
  • 44, 87, 115 : "False"
  • 28, 80, 108 : "False"
  • 11, 116, 76 : "False"
  • 105, 79, 95 : "False"
  • 62, 80, 80 : "False"
  • 7, 60, 104 : "False"
  • 91, 106, 34 : "False"
  • 125, 105, 56 : "False"
  • 9, 74, 87 : "False"
  • 88, 68, 6 : "False"
  • 40, 17, 109 : "False"
  • 116, 83, 29 : "False"
  • 102, 32, 110 : "False"
  • 121, 20, 85 : "False"
  • 112, 44, 121 : "False"
  • 74, 102, 39 : "False"
  • ```
  • ## Scoring
  • This is a [code golf challenge]. Your score is the number of bytes in your code.
  • > Explanations are optional, but I'm more likely to upvote answers that have one.
  • [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
#1: Initial revision by user avatar trichoplax‭ · 2023-10-07T23:06:49Z (about 1 year ago)
Borromean coprimes
Given 3 positive integers, indicate whether they are Borromean coprimes.

## Definition
3 positive integers are called ***Borromean coprimes*** if both of the following are true:
- Their greatest common divisor is 1.
- The greatest common divisor of every pair is greater than 1.

In summary, the triple of integers is coprime, but removing any single integer leaves a pair of integers that are not coprime. The name is by analogy with [Borromean rings](https://en.m.wikipedia.org/wiki/Borromean_rings).

## Input
- 3 positive integers.
- This may be as 3 separate inputs, or any ordered data structure.
- Your code must work for integers in any order (you must not assume that they are sorted).
- Your code must support input integers up to and including 127.

## Output
- 1 of 2 distinct values to represent "True" and "False".

## Examples
### GCD not equal to 1 for the triple
- Input: `2, 4, 6`
- Output: `False`

The greatest common divisor of the triple is 2, so these are not Borromean coprimes.

### GCD equal to 1 for a pair
- Input: `2, 3, 5`
- Output: `False`

The greatest common divisor of the pair `2, 3` is 1, so these are not Borromean coprimes.

### Borromean coprimes
- Input: `6, 10, 15`
- Output: `True`

The greatest common divisors of each pair are:
- GCD(6, 10) = 2
- GCD(6, 15) = 3
- GCD(10, 15) = 5

The greatest common divisor of the triple is 1, and the greatest common divisor of every pair is greater than 1, so these are Borromean coprimes.

## Non-golfed example code
Here is some Python code that meets the requirements of this challenge. The function `borromean_coprimes` returns `True` or `False`.

```python
from math import gcd

def borromean_coprimes(x, y, z):
    return (
        coprime_triple(x, y, z)
        and not coprime(x, y)
        and not coprime(x, z)
        and not coprime(y, z)
    )

def coprime(x, y):
    return gcd(x, y) == 1
    
def coprime_triple(x, y, z):
    return gcd(x, y, z) == 1
```

## Test cases
Test cases are in the format `comma, separated, inputs : "output"`.

You may use any 2 distinct values instead of "True" and "False".

```text
1, 1, 1 : "False"
1, 1, 2 : "False"
1, 1, 3 : "False"
1, 2, 2 : "False"
1, 2, 3 : "False"
2, 2, 2 : "False"
2, 2, 3 : "False"
2, 3, 3 : "False"
2, 3, 4 : "False"
2, 3, 5 : "False"
2, 4, 5 : "False"
2, 4, 6 : "False"
127, 127, 127: "False"
18, 33, 88 : "True"
108, 20, 105 : "True"
98, 30, 105 : "True"
22, 36, 33 : "True"
82, 30, 123 : "True"
40, 55, 22 : "True"
45, 12, 10 : "True"
38, 57, 78 : "True"
35, 84, 80 : "True"
84, 33, 22 : "True"
105, 54, 80 : "True"
26, 96, 39 : "True"
18, 26, 117 : "True"
50, 75, 48 : "True"
95, 76, 70 : "True"
50, 96, 45 : "True"
85, 34, 40 : "True"
84, 104, 39 : "True"
45, 72, 110 : "True"
72, 68, 51 : "True"
20, 105, 28 : "True"
75, 102, 100 : "True"
90, 105, 14 : "True"
105, 110, 84 : "True"
78, 70, 21 : "True"
105, 96, 14 : "True"
110, 120, 33 : "True"
70, 84, 15 : "True"
50, 6, 105 : "True"
70, 21, 45 : "True"
48, 70, 21 : "True"
76, 18, 57 : "True"
126, 77, 66 : "True"
6, 88, 99 : "True"
33, 77, 126 : "True"
88, 72, 33 : "True"
12, 63, 56 : "True"
80, 36, 105 : "True"
35, 110, 77 : "True"
21, 14, 18 : "True"
68, 85, 70 : "True"
75, 108, 80 : "True"
18, 21, 98 : "True"
26, 36, 39 : "True"
30, 98, 21 : "True"
50, 15, 36 : "True"
78, 51, 34 : "True"
44, 98, 77 : "True"
114, 105, 80 : "True"
15, 10, 72 : "True"
5, 91, 18 : "False"
51, 41, 98 : "False"
66, 78, 20 : "False"
76, 18, 50 : "False"
124, 105, 50 : "False"
54, 1, 93 : "False"
60, 41, 104 : "False"
127, 62, 40 : "False"
112, 101, 122 : "False"
7, 12, 74 : "False"
18, 95, 71 : "False"
123, 74, 3 : "False"
51, 79, 7 : "False"
9, 67, 98 : "False"
37, 6, 90 : "False"
43, 1, 45 : "False"
36, 14, 44 : "False"
37, 1, 111 : "False"
55, 89, 26 : "False"
90, 53, 28 : "False"
83, 12, 31 : "False"
19, 112, 5 : "False"
92, 19, 99 : "False"
58, 59, 124 : "False"
9, 106, 85 : "False"
108, 108, 6 : "False"
69, 31, 76 : "False"
96, 6, 42 : "False"
105, 47, 90 : "False"
43, 22, 29 : "False"
113, 19, 73 : "False"
77, 103, 113 : "False"
91, 89, 17 : "False"
60, 16, 61 : "False"
44, 87, 115 : "False"
28, 80, 108 : "False"
11, 116, 76 : "False"
105, 79, 95 : "False"
62, 80, 80 : "False"
7, 60, 104 : "False"
91, 106, 34 : "False"
125, 105, 56 : "False"
9, 74, 87 : "False"
88, 68, 6 : "False"
40, 17, 109 : "False"
116, 83, 29 : "False"
102, 32, 110 : "False"
121, 20, 85 : "False"
112, 44, 121 : "False"
74, 102, 39 : "False"
```

## Scoring
This is a [code golf challenge]. Your score is the number of bytes in your code.

> Explanations are optional, but I'm more likely to upvote answers that have one.


[code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"