Post History
Given 3 positive integers, indicate whether they are Borromean coprimes. Definition 3 positive integers are called Borromean coprimes if both of the following are true: Their greatest common d...
#3: Post edited
Borromean coprimes
- Given 3 positive integers, indicate whether they are Borromean coprimes.
- ## Definition
- 3 positive integers are called ***Borromean coprimes*** if both of the following are true:
- - Their greatest common divisor is 1.
- - The greatest common divisor of every pair is greater than 1.
- In summary, the triple of integers is [coprime](https://en.m.wikipedia.org/wiki/Coprime_integers#Coprimality_in_sets), but removing any single integer leaves a pair of integers that are not coprime. The name is by analogy with [Borromean rings](https://en.m.wikipedia.org/wiki/Borromean_rings).
- ## Input
- - 3 positive integers.
- - This may be as 3 separate inputs, or any ordered data structure.
- - Your code must work for integers in any order (you must not assume that they are sorted).
- - Your code must support input integers up to and including 127.
- ## Output
- - 1 of 2 distinct values to represent "True" and "False".
- ## Examples
- ### GCD not equal to 1 for the triple
- - Input: `2, 4, 6`
- - Output: `False`
- The greatest common divisor of the triple is 2, so these are not Borromean coprimes.
- ### GCD equal to 1 for a pair
- - Input: `2, 3, 5`
- - Output: `False`
- The greatest common divisor of the pair `2, 3` is 1, so these are not Borromean coprimes.
- ### Borromean coprimes
- - Input: `6, 10, 15`
- - Output: `True`
- The greatest common divisors of each pair are:
- - GCD(6, 10) = 2
- - GCD(6, 15) = 3
- - GCD(10, 15) = 5
- The greatest common divisor of the triple is 1, and the greatest common divisor of every pair is greater than 1, so these are Borromean coprimes.
- ## Non-golfed example code
- Here is some Python code that meets the requirements of this challenge. The function `borromean_coprimes` returns `True` or `False`.
- ```python
- from math import gcd
- def borromean_coprimes(x, y, z):
- return (
- coprime_triple(x, y, z)
- and not coprime(x, y)
- and not coprime(x, z)
- and not coprime(y, z)
- )
- def coprime(x, y):
- return gcd(x, y) == 1
- def coprime_triple(x, y, z):
- return gcd(x, y, z) == 1
- ```
- ## Test cases
- Test cases are in the format `comma, separated, inputs : "output"`.
- You may use any 2 distinct values instead of "True" and "False".
- ```text
- 1, 1, 1 : "False"
- 1, 1, 2 : "False"
- 1, 1, 3 : "False"
- 1, 2, 2 : "False"
- 1, 2, 3 : "False"
- 2, 2, 2 : "False"
- 2, 2, 3 : "False"
- 2, 3, 3 : "False"
- 2, 3, 4 : "False"
- 2, 3, 5 : "False"
- 2, 4, 5 : "False"
- 2, 4, 6 : "False"
127, 127, 127: "False"- 18, 33, 88 : "True"
- 108, 20, 105 : "True"
- 98, 30, 105 : "True"
- 22, 36, 33 : "True"
- 82, 30, 123 : "True"
- 40, 55, 22 : "True"
- 45, 12, 10 : "True"
- 38, 57, 78 : "True"
- 35, 84, 80 : "True"
- 84, 33, 22 : "True"
- 105, 54, 80 : "True"
- 26, 96, 39 : "True"
- 18, 26, 117 : "True"
- 50, 75, 48 : "True"
- 95, 76, 70 : "True"
- 50, 96, 45 : "True"
- 85, 34, 40 : "True"
- 84, 104, 39 : "True"
- 45, 72, 110 : "True"
- 72, 68, 51 : "True"
- 20, 105, 28 : "True"
- 75, 102, 100 : "True"
- 90, 105, 14 : "True"
- 105, 110, 84 : "True"
- 78, 70, 21 : "True"
- 105, 96, 14 : "True"
- 110, 120, 33 : "True"
- 70, 84, 15 : "True"
- 50, 6, 105 : "True"
- 70, 21, 45 : "True"
- 48, 70, 21 : "True"
- 76, 18, 57 : "True"
- 126, 77, 66 : "True"
- 6, 88, 99 : "True"
- 33, 77, 126 : "True"
- 88, 72, 33 : "True"
- 12, 63, 56 : "True"
- 80, 36, 105 : "True"
- 35, 110, 77 : "True"
- 21, 14, 18 : "True"
- 68, 85, 70 : "True"
- 75, 108, 80 : "True"
- 18, 21, 98 : "True"
- 26, 36, 39 : "True"
- 30, 98, 21 : "True"
- 50, 15, 36 : "True"
- 78, 51, 34 : "True"
- 44, 98, 77 : "True"
- 114, 105, 80 : "True"
- 15, 10, 72 : "True"
- 5, 91, 18 : "False"
- 51, 41, 98 : "False"
- 66, 78, 20 : "False"
- 76, 18, 50 : "False"
- 124, 105, 50 : "False"
- 54, 1, 93 : "False"
- 60, 41, 104 : "False"
- 127, 62, 40 : "False"
- 112, 101, 122 : "False"
- 7, 12, 74 : "False"
- 18, 95, 71 : "False"
- 123, 74, 3 : "False"
- 51, 79, 7 : "False"
- 9, 67, 98 : "False"
- 37, 6, 90 : "False"
- 43, 1, 45 : "False"
- 36, 14, 44 : "False"
- 37, 1, 111 : "False"
- 55, 89, 26 : "False"
- 90, 53, 28 : "False"
- 83, 12, 31 : "False"
- 19, 112, 5 : "False"
- 92, 19, 99 : "False"
- 58, 59, 124 : "False"
- 9, 106, 85 : "False"
- 108, 108, 6 : "False"
- 69, 31, 76 : "False"
- 96, 6, 42 : "False"
- 105, 47, 90 : "False"
- 43, 22, 29 : "False"
- 113, 19, 73 : "False"
- 77, 103, 113 : "False"
- 91, 89, 17 : "False"
- 60, 16, 61 : "False"
- 44, 87, 115 : "False"
- 28, 80, 108 : "False"
- 11, 116, 76 : "False"
- 105, 79, 95 : "False"
- 62, 80, 80 : "False"
- 7, 60, 104 : "False"
- 91, 106, 34 : "False"
- 125, 105, 56 : "False"
- 9, 74, 87 : "False"
- 88, 68, 6 : "False"
- 40, 17, 109 : "False"
- 116, 83, 29 : "False"
- 102, 32, 110 : "False"
- 121, 20, 85 : "False"
- 112, 44, 121 : "False"
- 74, 102, 39 : "False"
- ```
- ## Scoring
- This is a [code golf challenge]. Your score is the number of bytes in your code.
- > Explanations are optional, but I'm more likely to upvote answers that have one.
- [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
- Given 3 positive integers, indicate whether they are Borromean coprimes.
- ## Definition
- 3 positive integers are called ***Borromean coprimes*** if both of the following are true:
- - Their greatest common divisor is 1.
- - The greatest common divisor of every pair is greater than 1.
- In summary, the triple of integers is [coprime](https://en.m.wikipedia.org/wiki/Coprime_integers#Coprimality_in_sets), but removing any single integer leaves a pair of integers that are not coprime. The name is by analogy with [Borromean rings](https://en.m.wikipedia.org/wiki/Borromean_rings).
- ## Input
- - 3 positive integers.
- - This may be as 3 separate inputs, or any ordered data structure.
- - Your code must work for integers in any order (you must not assume that they are sorted).
- - Your code must support input integers up to and including 127.
- ## Output
- - 1 of 2 distinct values to represent "True" and "False".
- ## Examples
- ### GCD not equal to 1 for the triple
- - Input: `2, 4, 6`
- - Output: `False`
- The greatest common divisor of the triple is 2, so these are not Borromean coprimes.
- ### GCD equal to 1 for a pair
- - Input: `2, 3, 5`
- - Output: `False`
- The greatest common divisor of the pair `2, 3` is 1, so these are not Borromean coprimes.
- ### Borromean coprimes
- - Input: `6, 10, 15`
- - Output: `True`
- The greatest common divisors of each pair are:
- - GCD(6, 10) = 2
- - GCD(6, 15) = 3
- - GCD(10, 15) = 5
- The greatest common divisor of the triple is 1, and the greatest common divisor of every pair is greater than 1, so these are Borromean coprimes.
- ## Non-golfed example code
- Here is some Python code that meets the requirements of this challenge. The function `borromean_coprimes` returns `True` or `False`.
- ```python
- from math import gcd
- def borromean_coprimes(x, y, z):
- return (
- coprime_triple(x, y, z)
- and not coprime(x, y)
- and not coprime(x, z)
- and not coprime(y, z)
- )
- def coprime(x, y):
- return gcd(x, y) == 1
- def coprime_triple(x, y, z):
- return gcd(x, y, z) == 1
- ```
- ## Test cases
- Test cases are in the format `comma, separated, inputs : "output"`.
- You may use any 2 distinct values instead of "True" and "False".
- ```text
- 1, 1, 1 : "False"
- 1, 1, 2 : "False"
- 1, 1, 3 : "False"
- 1, 2, 2 : "False"
- 1, 2, 3 : "False"
- 2, 2, 2 : "False"
- 2, 2, 3 : "False"
- 2, 3, 3 : "False"
- 2, 3, 4 : "False"
- 2, 3, 5 : "False"
- 2, 4, 5 : "False"
- 2, 4, 6 : "False"
- 127, 127, 127 : "False"
- 18, 33, 88 : "True"
- 108, 20, 105 : "True"
- 98, 30, 105 : "True"
- 22, 36, 33 : "True"
- 82, 30, 123 : "True"
- 40, 55, 22 : "True"
- 45, 12, 10 : "True"
- 38, 57, 78 : "True"
- 35, 84, 80 : "True"
- 84, 33, 22 : "True"
- 105, 54, 80 : "True"
- 26, 96, 39 : "True"
- 18, 26, 117 : "True"
- 50, 75, 48 : "True"
- 95, 76, 70 : "True"
- 50, 96, 45 : "True"
- 85, 34, 40 : "True"
- 84, 104, 39 : "True"
- 45, 72, 110 : "True"
- 72, 68, 51 : "True"
- 20, 105, 28 : "True"
- 75, 102, 100 : "True"
- 90, 105, 14 : "True"
- 105, 110, 84 : "True"
- 78, 70, 21 : "True"
- 105, 96, 14 : "True"
- 110, 120, 33 : "True"
- 70, 84, 15 : "True"
- 50, 6, 105 : "True"
- 70, 21, 45 : "True"
- 48, 70, 21 : "True"
- 76, 18, 57 : "True"
- 126, 77, 66 : "True"
- 6, 88, 99 : "True"
- 33, 77, 126 : "True"
- 88, 72, 33 : "True"
- 12, 63, 56 : "True"
- 80, 36, 105 : "True"
- 35, 110, 77 : "True"
- 21, 14, 18 : "True"
- 68, 85, 70 : "True"
- 75, 108, 80 : "True"
- 18, 21, 98 : "True"
- 26, 36, 39 : "True"
- 30, 98, 21 : "True"
- 50, 15, 36 : "True"
- 78, 51, 34 : "True"
- 44, 98, 77 : "True"
- 114, 105, 80 : "True"
- 15, 10, 72 : "True"
- 5, 91, 18 : "False"
- 51, 41, 98 : "False"
- 66, 78, 20 : "False"
- 76, 18, 50 : "False"
- 124, 105, 50 : "False"
- 54, 1, 93 : "False"
- 60, 41, 104 : "False"
- 127, 62, 40 : "False"
- 112, 101, 122 : "False"
- 7, 12, 74 : "False"
- 18, 95, 71 : "False"
- 123, 74, 3 : "False"
- 51, 79, 7 : "False"
- 9, 67, 98 : "False"
- 37, 6, 90 : "False"
- 43, 1, 45 : "False"
- 36, 14, 44 : "False"
- 37, 1, 111 : "False"
- 55, 89, 26 : "False"
- 90, 53, 28 : "False"
- 83, 12, 31 : "False"
- 19, 112, 5 : "False"
- 92, 19, 99 : "False"
- 58, 59, 124 : "False"
- 9, 106, 85 : "False"
- 108, 108, 6 : "False"
- 69, 31, 76 : "False"
- 96, 6, 42 : "False"
- 105, 47, 90 : "False"
- 43, 22, 29 : "False"
- 113, 19, 73 : "False"
- 77, 103, 113 : "False"
- 91, 89, 17 : "False"
- 60, 16, 61 : "False"
- 44, 87, 115 : "False"
- 28, 80, 108 : "False"
- 11, 116, 76 : "False"
- 105, 79, 95 : "False"
- 62, 80, 80 : "False"
- 7, 60, 104 : "False"
- 91, 106, 34 : "False"
- 125, 105, 56 : "False"
- 9, 74, 87 : "False"
- 88, 68, 6 : "False"
- 40, 17, 109 : "False"
- 116, 83, 29 : "False"
- 102, 32, 110 : "False"
- 121, 20, 85 : "False"
- 112, 44, 121 : "False"
- 74, 102, 39 : "False"
- ```
- ## Scoring
- This is a [code golf challenge]. Your score is the number of bytes in your code.
- > Explanations are optional, but I'm more likely to upvote answers that have one.
- [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
#2: Post edited
- Given 3 positive integers, indicate whether they are Borromean coprimes.
- ## Definition
- 3 positive integers are called ***Borromean coprimes*** if both of the following are true:
- - Their greatest common divisor is 1.
- - The greatest common divisor of every pair is greater than 1.
In summary, the triple of integers is coprime, but removing any single integer leaves a pair of integers that are not coprime. The name is by analogy with [Borromean rings](https://en.m.wikipedia.org/wiki/Borromean_rings).- ## Input
- - 3 positive integers.
- - This may be as 3 separate inputs, or any ordered data structure.
- - Your code must work for integers in any order (you must not assume that they are sorted).
- - Your code must support input integers up to and including 127.
- ## Output
- - 1 of 2 distinct values to represent "True" and "False".
- ## Examples
- ### GCD not equal to 1 for the triple
- - Input: `2, 4, 6`
- - Output: `False`
- The greatest common divisor of the triple is 2, so these are not Borromean coprimes.
- ### GCD equal to 1 for a pair
- - Input: `2, 3, 5`
- - Output: `False`
- The greatest common divisor of the pair `2, 3` is 1, so these are not Borromean coprimes.
- ### Borromean coprimes
- - Input: `6, 10, 15`
- - Output: `True`
- The greatest common divisors of each pair are:
- - GCD(6, 10) = 2
- - GCD(6, 15) = 3
- - GCD(10, 15) = 5
- The greatest common divisor of the triple is 1, and the greatest common divisor of every pair is greater than 1, so these are Borromean coprimes.
- ## Non-golfed example code
- Here is some Python code that meets the requirements of this challenge. The function `borromean_coprimes` returns `True` or `False`.
- ```python
- from math import gcd
- def borromean_coprimes(x, y, z):
- return (
- coprime_triple(x, y, z)
- and not coprime(x, y)
- and not coprime(x, z)
- and not coprime(y, z)
- )
- def coprime(x, y):
- return gcd(x, y) == 1
- def coprime_triple(x, y, z):
- return gcd(x, y, z) == 1
- ```
- ## Test cases
- Test cases are in the format `comma, separated, inputs : "output"`.
- You may use any 2 distinct values instead of "True" and "False".
- ```text
- 1, 1, 1 : "False"
- 1, 1, 2 : "False"
- 1, 1, 3 : "False"
- 1, 2, 2 : "False"
- 1, 2, 3 : "False"
- 2, 2, 2 : "False"
- 2, 2, 3 : "False"
- 2, 3, 3 : "False"
- 2, 3, 4 : "False"
- 2, 3, 5 : "False"
- 2, 4, 5 : "False"
- 2, 4, 6 : "False"
- 127, 127, 127: "False"
- 18, 33, 88 : "True"
- 108, 20, 105 : "True"
- 98, 30, 105 : "True"
- 22, 36, 33 : "True"
- 82, 30, 123 : "True"
- 40, 55, 22 : "True"
- 45, 12, 10 : "True"
- 38, 57, 78 : "True"
- 35, 84, 80 : "True"
- 84, 33, 22 : "True"
- 105, 54, 80 : "True"
- 26, 96, 39 : "True"
- 18, 26, 117 : "True"
- 50, 75, 48 : "True"
- 95, 76, 70 : "True"
- 50, 96, 45 : "True"
- 85, 34, 40 : "True"
- 84, 104, 39 : "True"
- 45, 72, 110 : "True"
- 72, 68, 51 : "True"
- 20, 105, 28 : "True"
- 75, 102, 100 : "True"
- 90, 105, 14 : "True"
- 105, 110, 84 : "True"
- 78, 70, 21 : "True"
- 105, 96, 14 : "True"
- 110, 120, 33 : "True"
- 70, 84, 15 : "True"
- 50, 6, 105 : "True"
- 70, 21, 45 : "True"
- 48, 70, 21 : "True"
- 76, 18, 57 : "True"
- 126, 77, 66 : "True"
- 6, 88, 99 : "True"
- 33, 77, 126 : "True"
- 88, 72, 33 : "True"
- 12, 63, 56 : "True"
- 80, 36, 105 : "True"
- 35, 110, 77 : "True"
- 21, 14, 18 : "True"
- 68, 85, 70 : "True"
- 75, 108, 80 : "True"
- 18, 21, 98 : "True"
- 26, 36, 39 : "True"
- 30, 98, 21 : "True"
- 50, 15, 36 : "True"
- 78, 51, 34 : "True"
- 44, 98, 77 : "True"
- 114, 105, 80 : "True"
- 15, 10, 72 : "True"
- 5, 91, 18 : "False"
- 51, 41, 98 : "False"
- 66, 78, 20 : "False"
- 76, 18, 50 : "False"
- 124, 105, 50 : "False"
- 54, 1, 93 : "False"
- 60, 41, 104 : "False"
- 127, 62, 40 : "False"
- 112, 101, 122 : "False"
- 7, 12, 74 : "False"
- 18, 95, 71 : "False"
- 123, 74, 3 : "False"
- 51, 79, 7 : "False"
- 9, 67, 98 : "False"
- 37, 6, 90 : "False"
- 43, 1, 45 : "False"
- 36, 14, 44 : "False"
- 37, 1, 111 : "False"
- 55, 89, 26 : "False"
- 90, 53, 28 : "False"
- 83, 12, 31 : "False"
- 19, 112, 5 : "False"
- 92, 19, 99 : "False"
- 58, 59, 124 : "False"
- 9, 106, 85 : "False"
- 108, 108, 6 : "False"
- 69, 31, 76 : "False"
- 96, 6, 42 : "False"
- 105, 47, 90 : "False"
- 43, 22, 29 : "False"
- 113, 19, 73 : "False"
- 77, 103, 113 : "False"
- 91, 89, 17 : "False"
- 60, 16, 61 : "False"
- 44, 87, 115 : "False"
- 28, 80, 108 : "False"
- 11, 116, 76 : "False"
- 105, 79, 95 : "False"
- 62, 80, 80 : "False"
- 7, 60, 104 : "False"
- 91, 106, 34 : "False"
- 125, 105, 56 : "False"
- 9, 74, 87 : "False"
- 88, 68, 6 : "False"
- 40, 17, 109 : "False"
- 116, 83, 29 : "False"
- 102, 32, 110 : "False"
- 121, 20, 85 : "False"
- 112, 44, 121 : "False"
- 74, 102, 39 : "False"
- ```
- ## Scoring
- This is a [code golf challenge]. Your score is the number of bytes in your code.
- > Explanations are optional, but I'm more likely to upvote answers that have one.
- [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
- Given 3 positive integers, indicate whether they are Borromean coprimes.
- ## Definition
- 3 positive integers are called ***Borromean coprimes*** if both of the following are true:
- - Their greatest common divisor is 1.
- - The greatest common divisor of every pair is greater than 1.
- In summary, the triple of integers is [coprime](https://en.m.wikipedia.org/wiki/Coprime_integers#Coprimality_in_sets), but removing any single integer leaves a pair of integers that are not coprime. The name is by analogy with [Borromean rings](https://en.m.wikipedia.org/wiki/Borromean_rings).
- ## Input
- - 3 positive integers.
- - This may be as 3 separate inputs, or any ordered data structure.
- - Your code must work for integers in any order (you must not assume that they are sorted).
- - Your code must support input integers up to and including 127.
- ## Output
- - 1 of 2 distinct values to represent "True" and "False".
- ## Examples
- ### GCD not equal to 1 for the triple
- - Input: `2, 4, 6`
- - Output: `False`
- The greatest common divisor of the triple is 2, so these are not Borromean coprimes.
- ### GCD equal to 1 for a pair
- - Input: `2, 3, 5`
- - Output: `False`
- The greatest common divisor of the pair `2, 3` is 1, so these are not Borromean coprimes.
- ### Borromean coprimes
- - Input: `6, 10, 15`
- - Output: `True`
- The greatest common divisors of each pair are:
- - GCD(6, 10) = 2
- - GCD(6, 15) = 3
- - GCD(10, 15) = 5
- The greatest common divisor of the triple is 1, and the greatest common divisor of every pair is greater than 1, so these are Borromean coprimes.
- ## Non-golfed example code
- Here is some Python code that meets the requirements of this challenge. The function `borromean_coprimes` returns `True` or `False`.
- ```python
- from math import gcd
- def borromean_coprimes(x, y, z):
- return (
- coprime_triple(x, y, z)
- and not coprime(x, y)
- and not coprime(x, z)
- and not coprime(y, z)
- )
- def coprime(x, y):
- return gcd(x, y) == 1
- def coprime_triple(x, y, z):
- return gcd(x, y, z) == 1
- ```
- ## Test cases
- Test cases are in the format `comma, separated, inputs : "output"`.
- You may use any 2 distinct values instead of "True" and "False".
- ```text
- 1, 1, 1 : "False"
- 1, 1, 2 : "False"
- 1, 1, 3 : "False"
- 1, 2, 2 : "False"
- 1, 2, 3 : "False"
- 2, 2, 2 : "False"
- 2, 2, 3 : "False"
- 2, 3, 3 : "False"
- 2, 3, 4 : "False"
- 2, 3, 5 : "False"
- 2, 4, 5 : "False"
- 2, 4, 6 : "False"
- 127, 127, 127: "False"
- 18, 33, 88 : "True"
- 108, 20, 105 : "True"
- 98, 30, 105 : "True"
- 22, 36, 33 : "True"
- 82, 30, 123 : "True"
- 40, 55, 22 : "True"
- 45, 12, 10 : "True"
- 38, 57, 78 : "True"
- 35, 84, 80 : "True"
- 84, 33, 22 : "True"
- 105, 54, 80 : "True"
- 26, 96, 39 : "True"
- 18, 26, 117 : "True"
- 50, 75, 48 : "True"
- 95, 76, 70 : "True"
- 50, 96, 45 : "True"
- 85, 34, 40 : "True"
- 84, 104, 39 : "True"
- 45, 72, 110 : "True"
- 72, 68, 51 : "True"
- 20, 105, 28 : "True"
- 75, 102, 100 : "True"
- 90, 105, 14 : "True"
- 105, 110, 84 : "True"
- 78, 70, 21 : "True"
- 105, 96, 14 : "True"
- 110, 120, 33 : "True"
- 70, 84, 15 : "True"
- 50, 6, 105 : "True"
- 70, 21, 45 : "True"
- 48, 70, 21 : "True"
- 76, 18, 57 : "True"
- 126, 77, 66 : "True"
- 6, 88, 99 : "True"
- 33, 77, 126 : "True"
- 88, 72, 33 : "True"
- 12, 63, 56 : "True"
- 80, 36, 105 : "True"
- 35, 110, 77 : "True"
- 21, 14, 18 : "True"
- 68, 85, 70 : "True"
- 75, 108, 80 : "True"
- 18, 21, 98 : "True"
- 26, 36, 39 : "True"
- 30, 98, 21 : "True"
- 50, 15, 36 : "True"
- 78, 51, 34 : "True"
- 44, 98, 77 : "True"
- 114, 105, 80 : "True"
- 15, 10, 72 : "True"
- 5, 91, 18 : "False"
- 51, 41, 98 : "False"
- 66, 78, 20 : "False"
- 76, 18, 50 : "False"
- 124, 105, 50 : "False"
- 54, 1, 93 : "False"
- 60, 41, 104 : "False"
- 127, 62, 40 : "False"
- 112, 101, 122 : "False"
- 7, 12, 74 : "False"
- 18, 95, 71 : "False"
- 123, 74, 3 : "False"
- 51, 79, 7 : "False"
- 9, 67, 98 : "False"
- 37, 6, 90 : "False"
- 43, 1, 45 : "False"
- 36, 14, 44 : "False"
- 37, 1, 111 : "False"
- 55, 89, 26 : "False"
- 90, 53, 28 : "False"
- 83, 12, 31 : "False"
- 19, 112, 5 : "False"
- 92, 19, 99 : "False"
- 58, 59, 124 : "False"
- 9, 106, 85 : "False"
- 108, 108, 6 : "False"
- 69, 31, 76 : "False"
- 96, 6, 42 : "False"
- 105, 47, 90 : "False"
- 43, 22, 29 : "False"
- 113, 19, 73 : "False"
- 77, 103, 113 : "False"
- 91, 89, 17 : "False"
- 60, 16, 61 : "False"
- 44, 87, 115 : "False"
- 28, 80, 108 : "False"
- 11, 116, 76 : "False"
- 105, 79, 95 : "False"
- 62, 80, 80 : "False"
- 7, 60, 104 : "False"
- 91, 106, 34 : "False"
- 125, 105, 56 : "False"
- 9, 74, 87 : "False"
- 88, 68, 6 : "False"
- 40, 17, 109 : "False"
- 116, 83, 29 : "False"
- 102, 32, 110 : "False"
- 121, 20, 85 : "False"
- 112, 44, 121 : "False"
- 74, 102, 39 : "False"
- ```
- ## Scoring
- This is a [code golf challenge]. Your score is the number of bytes in your code.
- > Explanations are optional, but I'm more likely to upvote answers that have one.
- [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"
#1: Initial revision
Borromean coprimes
Given 3 positive integers, indicate whether they are Borromean coprimes. ## Definition 3 positive integers are called ***Borromean coprimes*** if both of the following are true: - Their greatest common divisor is 1. - The greatest common divisor of every pair is greater than 1. In summary, the triple of integers is coprime, but removing any single integer leaves a pair of integers that are not coprime. The name is by analogy with [Borromean rings](https://en.m.wikipedia.org/wiki/Borromean_rings). ## Input - 3 positive integers. - This may be as 3 separate inputs, or any ordered data structure. - Your code must work for integers in any order (you must not assume that they are sorted). - Your code must support input integers up to and including 127. ## Output - 1 of 2 distinct values to represent "True" and "False". ## Examples ### GCD not equal to 1 for the triple - Input: `2, 4, 6` - Output: `False` The greatest common divisor of the triple is 2, so these are not Borromean coprimes. ### GCD equal to 1 for a pair - Input: `2, 3, 5` - Output: `False` The greatest common divisor of the pair `2, 3` is 1, so these are not Borromean coprimes. ### Borromean coprimes - Input: `6, 10, 15` - Output: `True` The greatest common divisors of each pair are: - GCD(6, 10) = 2 - GCD(6, 15) = 3 - GCD(10, 15) = 5 The greatest common divisor of the triple is 1, and the greatest common divisor of every pair is greater than 1, so these are Borromean coprimes. ## Non-golfed example code Here is some Python code that meets the requirements of this challenge. The function `borromean_coprimes` returns `True` or `False`. ```python from math import gcd def borromean_coprimes(x, y, z): return ( coprime_triple(x, y, z) and not coprime(x, y) and not coprime(x, z) and not coprime(y, z) ) def coprime(x, y): return gcd(x, y) == 1 def coprime_triple(x, y, z): return gcd(x, y, z) == 1 ``` ## Test cases Test cases are in the format `comma, separated, inputs : "output"`. You may use any 2 distinct values instead of "True" and "False". ```text 1, 1, 1 : "False" 1, 1, 2 : "False" 1, 1, 3 : "False" 1, 2, 2 : "False" 1, 2, 3 : "False" 2, 2, 2 : "False" 2, 2, 3 : "False" 2, 3, 3 : "False" 2, 3, 4 : "False" 2, 3, 5 : "False" 2, 4, 5 : "False" 2, 4, 6 : "False" 127, 127, 127: "False" 18, 33, 88 : "True" 108, 20, 105 : "True" 98, 30, 105 : "True" 22, 36, 33 : "True" 82, 30, 123 : "True" 40, 55, 22 : "True" 45, 12, 10 : "True" 38, 57, 78 : "True" 35, 84, 80 : "True" 84, 33, 22 : "True" 105, 54, 80 : "True" 26, 96, 39 : "True" 18, 26, 117 : "True" 50, 75, 48 : "True" 95, 76, 70 : "True" 50, 96, 45 : "True" 85, 34, 40 : "True" 84, 104, 39 : "True" 45, 72, 110 : "True" 72, 68, 51 : "True" 20, 105, 28 : "True" 75, 102, 100 : "True" 90, 105, 14 : "True" 105, 110, 84 : "True" 78, 70, 21 : "True" 105, 96, 14 : "True" 110, 120, 33 : "True" 70, 84, 15 : "True" 50, 6, 105 : "True" 70, 21, 45 : "True" 48, 70, 21 : "True" 76, 18, 57 : "True" 126, 77, 66 : "True" 6, 88, 99 : "True" 33, 77, 126 : "True" 88, 72, 33 : "True" 12, 63, 56 : "True" 80, 36, 105 : "True" 35, 110, 77 : "True" 21, 14, 18 : "True" 68, 85, 70 : "True" 75, 108, 80 : "True" 18, 21, 98 : "True" 26, 36, 39 : "True" 30, 98, 21 : "True" 50, 15, 36 : "True" 78, 51, 34 : "True" 44, 98, 77 : "True" 114, 105, 80 : "True" 15, 10, 72 : "True" 5, 91, 18 : "False" 51, 41, 98 : "False" 66, 78, 20 : "False" 76, 18, 50 : "False" 124, 105, 50 : "False" 54, 1, 93 : "False" 60, 41, 104 : "False" 127, 62, 40 : "False" 112, 101, 122 : "False" 7, 12, 74 : "False" 18, 95, 71 : "False" 123, 74, 3 : "False" 51, 79, 7 : "False" 9, 67, 98 : "False" 37, 6, 90 : "False" 43, 1, 45 : "False" 36, 14, 44 : "False" 37, 1, 111 : "False" 55, 89, 26 : "False" 90, 53, 28 : "False" 83, 12, 31 : "False" 19, 112, 5 : "False" 92, 19, 99 : "False" 58, 59, 124 : "False" 9, 106, 85 : "False" 108, 108, 6 : "False" 69, 31, 76 : "False" 96, 6, 42 : "False" 105, 47, 90 : "False" 43, 22, 29 : "False" 113, 19, 73 : "False" 77, 103, 113 : "False" 91, 89, 17 : "False" 60, 16, 61 : "False" 44, 87, 115 : "False" 28, 80, 108 : "False" 11, 116, 76 : "False" 105, 79, 95 : "False" 62, 80, 80 : "False" 7, 60, 104 : "False" 91, 106, 34 : "False" 125, 105, 56 : "False" 9, 74, 87 : "False" 88, 68, 6 : "False" 40, 17, 109 : "False" 116, 83, 29 : "False" 102, 32, 110 : "False" 121, 20, 85 : "False" 112, 44, 121 : "False" 74, 102, 39 : "False" ``` ## Scoring This is a [code golf challenge]. Your score is the number of bytes in your code. > Explanations are optional, but I'm more likely to upvote answers that have one. [code golf challenge]: https://codegolf.codidact.com/categories/49/tags/4274 "The code-golf tag"