Post History
#6: Post edited
Print virtual fractions / 2-adic fractions / Modular multiplicative inverse [FINALIZED]
## Now posted: [Print virtual fractions / 2-adic fractions / Modular multiplicative inverse](https://codegolf.codidact.com/posts/290612)- ---
- ### TL;DR
- Print this values (or an extension of them):
- ```
- 1
- 43691
- 52429
- 28087
- 36409
- 35747
- 20165
- 61167
- 61681
- 51739
- 53053
- 14247
- 23593
- 55827
- 49717
- 31711
- 33761
- 44939
- 7085
- 28567
- 39961
- 48771
- 20389
- 18127
- 22737
- 64251
- 21021
- 46471
- 60937
- 55539
- 38677
- 61375
- 4033
- 19563
- 4749
- 43383
- 61945
- 51555
- 14469
- 5807
- 18609
- 17371
- 64765
- 60263
- 18409
- 12243
- 54261
- 23455
- 41889
- ```
- ------
- ### Explanation
- Virtual fractions are integers that have the feature that you can multiply them with the denominator and you get the numerator when you store them in a N-Bit integer.
- For example, you have the 16 bit unsigned integer with the value `0xAAAB` (43691). You can multiply it with 3 and get 1.
- ```
- 3 * 0xAAAB = 3 * 0b1010 1010 1010 1011 = 3 * 43691
- = 0x20001 = 0b10 0000 0000 0000 0001 = 131073
- Storing it in a 16 bit variable drops the 1 at bit 17:
- = 0x0001 = 0b0000 0000 0000 0001 = 1
- ```
- Or $3 \cdot 43691 = 1 \mod 65536$
- This is basically a p-adic/2-adic number with a limited amount of digits. And it is the same as the modular multiplicative inverse with a modulus of 65536 ($2^{16}$).
- This works only with bases that are odd, without any shifting. For this challenge we only print the ones with a numerator of 1.
- -------
- ### Rules
- - Print at least 16 bit of the virtual fraction, you can use more.
- - Print at least the virtual fractions of `1/a` for odd a where `a<98`.
- - You can print it in any normal base
- - You can print additional stuff, but it should be clear what parts belong to the virtual fractions and what not.
- - Your program should print the required output in less than 1h on a modern PC.
- -------
- ### Ungolfed example
- ```
- #!/usr/bin/env python3
- import sys
- #Calculates the modular multiplicative inverse
- def imod(a, n):
- c=1
- while c % a:
- c+=n
- return c//a
- #Print the virtual fractions for 16-bit integers
- n=2**16
- for i in range(1,98,2): #For the values 1/1, 1/3, ... 1/97
- b = imod(i,n)
- print("{:>2} * 0x{:>04X} = {:2>} mod 0x{:>04X}".format(i,b,i*b%n,n))
- ```
- ## Now posted: [Print virtual fractions / 2-adic fractions / Modular multiplicative inverse](https://codegolf.codidact.com/posts/290667)
- ---
- ### TL;DR
- Print this values (or an extension of them):
- ```
- 1
- 43691
- 52429
- 28087
- 36409
- 35747
- 20165
- 61167
- 61681
- 51739
- 53053
- 14247
- 23593
- 55827
- 49717
- 31711
- 33761
- 44939
- 7085
- 28567
- 39961
- 48771
- 20389
- 18127
- 22737
- 64251
- 21021
- 46471
- 60937
- 55539
- 38677
- 61375
- 4033
- 19563
- 4749
- 43383
- 61945
- 51555
- 14469
- 5807
- 18609
- 17371
- 64765
- 60263
- 18409
- 12243
- 54261
- 23455
- 41889
- ```
- ------
- ### Explanation
- Virtual fractions are integers that have the feature that you can multiply them with the denominator and you get the numerator when you store them in a N-Bit integer.
- For example, you have the 16 bit unsigned integer with the value `0xAAAB` (43691). You can multiply it with 3 and get 1.
- ```
- 3 * 0xAAAB = 3 * 0b1010 1010 1010 1011 = 3 * 43691
- = 0x20001 = 0b10 0000 0000 0000 0001 = 131073
- Storing it in a 16 bit variable drops the 1 at bit 17:
- = 0x0001 = 0b0000 0000 0000 0001 = 1
- ```
- Or $3 \cdot 43691 = 1 \mod 65536$
- This is basically a p-adic/2-adic number with a limited amount of digits. And it is the same as the modular multiplicative inverse with a modulus of 65536 ($2^{16}$).
- This works only with bases that are odd, without any shifting. For this challenge we only print the ones with a numerator of 1.
- -------
- ### Rules
- - Print at least 16 bit of the virtual fraction, you can use more.
- - Print at least the virtual fractions of `1/a` for odd a where `a<98`.
- - You can print it in any normal base
- - You can print additional stuff, but it should be clear what parts belong to the virtual fractions and what not.
- - Your program should print the required output in less than 1h on a modern PC.
- -------
- ### Ungolfed example
- ```
- #!/usr/bin/env python3
- import sys
- #Calculates the modular multiplicative inverse
- def imod(a, n):
- c=1
- while c % a:
- c+=n
- return c//a
- #Print the virtual fractions for 16-bit integers
- n=2**16
- for i in range(1,98,2): #For the values 1/1, 1/3, ... 1/97
- b = imod(i,n)
- print("{:>2} * 0x{:>04X} = {:2>} mod 0x{:>04X}".format(i,b,i*b%n,n))
- ```
#5: Post edited
Print virtual fractions / 2-adic fractions / Modular multiplicative inverse
- Print virtual fractions / 2-adic fractions / Modular multiplicative inverse [FINALIZED]
- ### TL;DR
- Print this values (or an extension of them):
- ```
- 1
- 43691
- 52429
- 28087
- 36409
- 35747
- 20165
- 61167
- 61681
- 51739
- 53053
- 14247
- 23593
- 55827
- 49717
- 31711
- 33761
- 44939
- 7085
- 28567
- 39961
- 48771
- 20389
- 18127
- 22737
- 64251
- 21021
- 46471
- 60937
- 55539
- 38677
- 61375
- 4033
- 19563
- 4749
- 43383
- 61945
- 51555
- 14469
- 5807
- 18609
- 17371
- 64765
- 60263
- 18409
- 12243
- 54261
- 23455
- 41889
- ```
- ------
- ### Explanation
- Virtual fractions are integers that have the feature that you can multiply them with the denominator and you get the numerator when you store them in a N-Bit integer.
- For example, you have the 16 bit unsigned integer with the value `0xAAAB` (43691). You can multiply it with 3 and get 1.
- ```
- 3 * 0xAAAB = 3 * 0b1010 1010 1010 1011 = 3 * 43691
- = 0x20001 = 0b10 0000 0000 0000 0001 = 131073
- Storing it in a 16 bit variable drops the 1 at bit 17:
- = 0x0001 = 0b0000 0000 0000 0001 = 1
- ```
- Or $3 \cdot 43691 = 1 \mod 65536$
- This is basically a p-adic/2-adic number with a limited amount of digits. And it is the same as the modular multiplicative inverse with a modulus of 65536 ($2^{16}$).
- This works only with bases that are odd, without any shifting. For this challenge we only print the ones with a numerator of 1.
- -------
- ### Rules
- - Print at least 16 bit of the virtual fraction, you can use more.
- - Print at least the virtual fractions of `1/a` for odd a where `a<98`.
- - You can print it in any normal base
- - You can print additional stuff, but it should be clear what parts belong to the virtual fractions and what not.
- - Your program should print the required output in less than 1h on a modern PC.
- -------
- ### Ungolfed example
- ```
- #!/usr/bin/env python3
- import sys
- #Calculates the modular multiplicative inverse
- def imod(a, n):
- c=1
- while c % a:
- c+=n
- return c//a
- #Print the virtual fractions for 16-bit integers
- n=2**16
- for i in range(1,98,2): #For the values 1/1, 1/3, ... 1/97
- b = imod(i,n)
- print("{:>2} * 0x{:>04X} = {:2>} mod 0x{:>04X}".format(i,b,i*b%n,n))
- ```
- ## Now posted: [Print virtual fractions / 2-adic fractions / Modular multiplicative inverse](https://codegolf.codidact.com/posts/290612)
- ---
- ### TL;DR
- Print this values (or an extension of them):
- ```
- 1
- 43691
- 52429
- 28087
- 36409
- 35747
- 20165
- 61167
- 61681
- 51739
- 53053
- 14247
- 23593
- 55827
- 49717
- 31711
- 33761
- 44939
- 7085
- 28567
- 39961
- 48771
- 20389
- 18127
- 22737
- 64251
- 21021
- 46471
- 60937
- 55539
- 38677
- 61375
- 4033
- 19563
- 4749
- 43383
- 61945
- 51555
- 14469
- 5807
- 18609
- 17371
- 64765
- 60263
- 18409
- 12243
- 54261
- 23455
- 41889
- ```
- ------
- ### Explanation
- Virtual fractions are integers that have the feature that you can multiply them with the denominator and you get the numerator when you store them in a N-Bit integer.
- For example, you have the 16 bit unsigned integer with the value `0xAAAB` (43691). You can multiply it with 3 and get 1.
- ```
- 3 * 0xAAAB = 3 * 0b1010 1010 1010 1011 = 3 * 43691
- = 0x20001 = 0b10 0000 0000 0000 0001 = 131073
- Storing it in a 16 bit variable drops the 1 at bit 17:
- = 0x0001 = 0b0000 0000 0000 0001 = 1
- ```
- Or $3 \cdot 43691 = 1 \mod 65536$
- This is basically a p-adic/2-adic number with a limited amount of digits. And it is the same as the modular multiplicative inverse with a modulus of 65536 ($2^{16}$).
- This works only with bases that are odd, without any shifting. For this challenge we only print the ones with a numerator of 1.
- -------
- ### Rules
- - Print at least 16 bit of the virtual fraction, you can use more.
- - Print at least the virtual fractions of `1/a` for odd a where `a<98`.
- - You can print it in any normal base
- - You can print additional stuff, but it should be clear what parts belong to the virtual fractions and what not.
- - Your program should print the required output in less than 1h on a modern PC.
- -------
- ### Ungolfed example
- ```
- #!/usr/bin/env python3
- import sys
- #Calculates the modular multiplicative inverse
- def imod(a, n):
- c=1
- while c % a:
- c+=n
- return c//a
- #Print the virtual fractions for 16-bit integers
- n=2**16
- for i in range(1,98,2): #For the values 1/1, 1/3, ... 1/97
- b = imod(i,n)
- print("{:>2} * 0x{:>04X} = {:2>} mod 0x{:>04X}".format(i,b,i*b%n,n))
- ```
#4: Post edited
- ### TL;DR
- Print this values (or an extension of them):
- ```
- 1
- 43691
- 52429
- 28087
- 36409
- 35747
- 20165
- 61167
- 61681
- 51739
- 53053
- 14247
- 23593
- 55827
- 49717
- 31711
- 33761
- 44939
- 7085
- 28567
- 39961
- 48771
- 20389
- 18127
- 22737
- 64251
- 21021
- 46471
- 60937
- 55539
- 38677
- 61375
- 4033
- 19563
- 4749
- 43383
- 61945
- 51555
- 14469
- 5807
- 18609
- 17371
- 64765
- 60263
- 18409
- 12243
- 54261
- 23455
- 41889
- ```
- ------
- ### Explanation
- Virtual fractions are integers that have the feature that you can multiply them with the denominator and you get the numerator when you store them in a N-Bit integer.
- For example, you have the 16 bit unsigned integer with the value `0xAAAB` (43691). You can multiply it with 3 and get 1.
- ```
3 * 0xAAAB 3 * 0b1010 1010 1010 1011= 0x20001 0b10 0000 0000 0000 0001- Storing it in a 16 bit variable drops the 1 at bit 17:
= 0x0001 0b0000 0000 0000 0001- ```
- Or $3 \cdot 43691 = 1 \mod 65536$
- This is basically a p-adic/2-adic number with a limited amount of digits. And it is the same as the modular multiplicative inverse with a modulus of 65536 ($2^{16}$).
- This works only with bases that are odd, without any shifting. For this challenge we only print the ones with a numerator of 1.
- -------
- ### Rules
- - Print at least 16 bit of the virtual fraction, you can use more.
- - Print at least the virtual fractions of `1/a` for odd a where `a<98`.
- - You can print it in any normal base
- - You can print additional stuff, but it should be clear what parts belong to the virtual fractions and what not.
- - Your program should print the required output in less than 1h on a modern PC.
- -------
- ### Ungolfed example
- ```
- #!/usr/bin/env python3
- import sys
- #Calculates the modular multiplicative inverse
- def imod(a, n):
- c=1
- while c % a:
- c+=n
- return c//a
- #Print the virtual fractions for 16-bit integers
- n=2**16
- for i in range(1,98,2): #For the values 1/1, 1/3, ... 1/97
- b = imod(i,n)
- print("{:>2} * 0x{:>04X} = {:2>} mod 0x{:>04X}".format(i,b,i*b%n,n))
- ```
- ### TL;DR
- Print this values (or an extension of them):
- ```
- 1
- 43691
- 52429
- 28087
- 36409
- 35747
- 20165
- 61167
- 61681
- 51739
- 53053
- 14247
- 23593
- 55827
- 49717
- 31711
- 33761
- 44939
- 7085
- 28567
- 39961
- 48771
- 20389
- 18127
- 22737
- 64251
- 21021
- 46471
- 60937
- 55539
- 38677
- 61375
- 4033
- 19563
- 4749
- 43383
- 61945
- 51555
- 14469
- 5807
- 18609
- 17371
- 64765
- 60263
- 18409
- 12243
- 54261
- 23455
- 41889
- ```
- ------
- ### Explanation
- Virtual fractions are integers that have the feature that you can multiply them with the denominator and you get the numerator when you store them in a N-Bit integer.
- For example, you have the 16 bit unsigned integer with the value `0xAAAB` (43691). You can multiply it with 3 and get 1.
- ```
- 3 * 0xAAAB = 3 * 0b1010 1010 1010 1011 = 3 * 43691
- = 0x20001 = 0b10 0000 0000 0000 0001 = 131073
- Storing it in a 16 bit variable drops the 1 at bit 17:
- = 0x0001 = 0b0000 0000 0000 0001 = 1
- ```
- Or $3 \cdot 43691 = 1 \mod 65536$
- This is basically a p-adic/2-adic number with a limited amount of digits. And it is the same as the modular multiplicative inverse with a modulus of 65536 ($2^{16}$).
- This works only with bases that are odd, without any shifting. For this challenge we only print the ones with a numerator of 1.
- -------
- ### Rules
- - Print at least 16 bit of the virtual fraction, you can use more.
- - Print at least the virtual fractions of `1/a` for odd a where `a<98`.
- - You can print it in any normal base
- - You can print additional stuff, but it should be clear what parts belong to the virtual fractions and what not.
- - Your program should print the required output in less than 1h on a modern PC.
- -------
- ### Ungolfed example
- ```
- #!/usr/bin/env python3
- import sys
- #Calculates the modular multiplicative inverse
- def imod(a, n):
- c=1
- while c % a:
- c+=n
- return c//a
- #Print the virtual fractions for 16-bit integers
- n=2**16
- for i in range(1,98,2): #For the values 1/1, 1/3, ... 1/97
- b = imod(i,n)
- print("{:>2} * 0x{:>04X} = {:2>} mod 0x{:>04X}".format(i,b,i*b%n,n))
- ```
#3: Post edited
- ### TL;DR
- Print this values (or an extension of them):
- ```
- 1
- 43691
- 52429
- 28087
- 36409
- 35747
- 20165
- 61167
- 61681
- 51739
- 53053
- 14247
- 23593
- 55827
- 49717
- 31711
- 33761
- 44939
- 7085
- 28567
- 39961
- 48771
- 20389
- 18127
- 22737
- 64251
- 21021
- 46471
- 60937
- 55539
- 38677
- 61375
- 4033
- 19563
- 4749
- 43383
- 61945
- 51555
- 14469
- 5807
- 18609
- 17371
- 64765
- 60263
- 18409
- 12243
- 54261
- 23455
- 41889
- ```
- ------
- ### Explanation
- Virtual fractions are integers that have the feature that you can multiply them with the denominator and you get the numerator when you store them in a N-Bit integer.
- For example, you have the 16 bit unsigned integer with the value `0xAAAB` (43691). You can multiply it with 3 and get 1.
- ```
- 3 * 0xAAAB 3 * 0b1010 1010 1010 1011
- = 0x20001 0b10 0000 0000 0000 0001
- Storing it in a 16 bit variable drops the 1 at bit 17:
- = 0x0001 0b0000 0000 0000 0001
- ```
- Or $3 \cdot 43691 = 1 \mod 65536$
- This is basically a p-adic/2-adic number with a limited amount of digits. And it is the same as the modular multiplicative inverse with a modulus of 65536 ($2^{16}$).
- This works only with bases that are odd, without any shifting. For this challenge we only print the ones with a numerator of 1.
- -------
- ### Rules
- - Print at least 16 bit of the virtual fraction, you can use more.
- - Print at least the virtual fractions of `1/a` for odd a where `a<98`.
- - You can print it in any normal base
- - You can print additional stuff, but it should be clear what parts belong to the virtual fractions and what not.
- Your program should finish in less than 1h on a modern PC.- -------
- ### Ungolfed example
- ```
- #!/usr/bin/env python3
- import sys
- #Calculates the modular multiplicative inverse
- def imod(a, n):
- c=1
- while c % a:
- c+=n
- return c//a
- #Print the virtual fractions for 16-bit integers
- n=2**16
- for i in range(1,98,2): #For the values 1/1, 1/3, ... 1/97
- b = imod(i,n)
- print("{:>2} * 0x{:>04X} = {:2>} mod 0x{:>04X}".format(i,b,i*b%n,n))
- ```
- ### TL;DR
- Print this values (or an extension of them):
- ```
- 1
- 43691
- 52429
- 28087
- 36409
- 35747
- 20165
- 61167
- 61681
- 51739
- 53053
- 14247
- 23593
- 55827
- 49717
- 31711
- 33761
- 44939
- 7085
- 28567
- 39961
- 48771
- 20389
- 18127
- 22737
- 64251
- 21021
- 46471
- 60937
- 55539
- 38677
- 61375
- 4033
- 19563
- 4749
- 43383
- 61945
- 51555
- 14469
- 5807
- 18609
- 17371
- 64765
- 60263
- 18409
- 12243
- 54261
- 23455
- 41889
- ```
- ------
- ### Explanation
- Virtual fractions are integers that have the feature that you can multiply them with the denominator and you get the numerator when you store them in a N-Bit integer.
- For example, you have the 16 bit unsigned integer with the value `0xAAAB` (43691). You can multiply it with 3 and get 1.
- ```
- 3 * 0xAAAB 3 * 0b1010 1010 1010 1011
- = 0x20001 0b10 0000 0000 0000 0001
- Storing it in a 16 bit variable drops the 1 at bit 17:
- = 0x0001 0b0000 0000 0000 0001
- ```
- Or $3 \cdot 43691 = 1 \mod 65536$
- This is basically a p-adic/2-adic number with a limited amount of digits. And it is the same as the modular multiplicative inverse with a modulus of 65536 ($2^{16}$).
- This works only with bases that are odd, without any shifting. For this challenge we only print the ones with a numerator of 1.
- -------
- ### Rules
- - Print at least 16 bit of the virtual fraction, you can use more.
- - Print at least the virtual fractions of `1/a` for odd a where `a<98`.
- - You can print it in any normal base
- - You can print additional stuff, but it should be clear what parts belong to the virtual fractions and what not.
- - Your program should print the required output in less than 1h on a modern PC.
- -------
- ### Ungolfed example
- ```
- #!/usr/bin/env python3
- import sys
- #Calculates the modular multiplicative inverse
- def imod(a, n):
- c=1
- while c % a:
- c+=n
- return c//a
- #Print the virtual fractions for 16-bit integers
- n=2**16
- for i in range(1,98,2): #For the values 1/1, 1/3, ... 1/97
- b = imod(i,n)
- print("{:>2} * 0x{:>04X} = {:2>} mod 0x{:>04X}".format(i,b,i*b%n,n))
- ```
#2: Post edited
- ### TL;DR
- Print this values (or an extension of them):
- ```
- 1
- 43691
- 52429
- 28087
- 36409
- 35747
- 20165
- 61167
- 61681
- 51739
- 53053
- 14247
- 23593
- 55827
- 49717
- 31711
- 33761
- 44939
- 7085
- 28567
- 39961
- 48771
- 20389
- 18127
- 22737
- 64251
- 21021
- 46471
- 60937
- 55539
- 38677
- 61375
- 4033
- 19563
- 4749
- 43383
- 61945
- 51555
- 14469
- 5807
- 18609
- 17371
- 64765
- 60263
- 18409
- 12243
- 54261
- 23455
- 41889
- ```
- ------
- ### Explanation
- Virtual fractions are integers that have the feature that you can multiply them with the denominator and you get the numerator when you store them in a N-Bit integer.
- For example, you have the 16 bit unsigned integer with the value `0xAAAB` (43691). You can multiply it with 3 and get 1.
- ```
- 3 * 0xAAAB 3 * 0b1010 1010 1010 1011
- = 0x20001 0b10 0000 0000 0000 0001
- Storing it in a 16 bit variable drops the 1 at bit 17:
- = 0x0001 0b0000 0000 0000 0001
- ```
- Or $3 \cdot 43691 = 1 \mod 65536$
This is basically a p-adic/2-adic number with a limited amount of digits. And it is the same as the modular multiplicative inverse with a modulus of 65536 ($2^16$).- -------
- ### Rules
- - Print at least 16 bit of the virtual fraction, you can use more.
- Print at least the virtual fractions of 1/a for all odd a where `a<98`.- - You can print it in any normal base
- - You can print additional stuff, but it should be clear what parts belong to the virtual fractions and what not.
- - Your program should finish in less than 1h on a modern PC.
- -------
- ### Ungolfed example
- ```
- #!/usr/bin/env python3
- import sys
- #Calculates the modular multiplicative inverse
- def imod(a, n):
- c=1
- while c % a:
- c+=n
- return c//a
- #Print the virtual fractions for 16-bit integers
- n=2**16
- for i in range(1,98,2): #For the values 1/1, 1/3, ... 1/97
- b = imod(i,n)
- print("{:>2} * 0x{:>04X} = {:2>} mod 0x{:>04X}".format(i,b,i*b%n,n))
- ```
- ### TL;DR
- Print this values (or an extension of them):
- ```
- 1
- 43691
- 52429
- 28087
- 36409
- 35747
- 20165
- 61167
- 61681
- 51739
- 53053
- 14247
- 23593
- 55827
- 49717
- 31711
- 33761
- 44939
- 7085
- 28567
- 39961
- 48771
- 20389
- 18127
- 22737
- 64251
- 21021
- 46471
- 60937
- 55539
- 38677
- 61375
- 4033
- 19563
- 4749
- 43383
- 61945
- 51555
- 14469
- 5807
- 18609
- 17371
- 64765
- 60263
- 18409
- 12243
- 54261
- 23455
- 41889
- ```
- ------
- ### Explanation
- Virtual fractions are integers that have the feature that you can multiply them with the denominator and you get the numerator when you store them in a N-Bit integer.
- For example, you have the 16 bit unsigned integer with the value `0xAAAB` (43691). You can multiply it with 3 and get 1.
- ```
- 3 * 0xAAAB 3 * 0b1010 1010 1010 1011
- = 0x20001 0b10 0000 0000 0000 0001
- Storing it in a 16 bit variable drops the 1 at bit 17:
- = 0x0001 0b0000 0000 0000 0001
- ```
- Or $3 \cdot 43691 = 1 \mod 65536$
- This is basically a p-adic/2-adic number with a limited amount of digits. And it is the same as the modular multiplicative inverse with a modulus of 65536 ($2^{16}$).
- This works only with bases that are odd, without any shifting. For this challenge we only print the ones with a numerator of 1.
- -------
- ### Rules
- - Print at least 16 bit of the virtual fraction, you can use more.
- - Print at least the virtual fractions of `1/a` for odd a where `a<98`.
- - You can print it in any normal base
- - You can print additional stuff, but it should be clear what parts belong to the virtual fractions and what not.
- - Your program should finish in less than 1h on a modern PC.
- -------
- ### Ungolfed example
- ```
- #!/usr/bin/env python3
- import sys
- #Calculates the modular multiplicative inverse
- def imod(a, n):
- c=1
- while c % a:
- c+=n
- return c//a
- #Print the virtual fractions for 16-bit integers
- n=2**16
- for i in range(1,98,2): #For the values 1/1, 1/3, ... 1/97
- b = imod(i,n)
- print("{:>2} * 0x{:>04X} = {:2>} mod 0x{:>04X}".format(i,b,i*b%n,n))
- ```
#1: Initial revision
Print virtual fractions / 2-adic fractions / Modular multiplicative inverse
### TL;DR Print this values (or an extension of them): ``` 1 43691 52429 28087 36409 35747 20165 61167 61681 51739 53053 14247 23593 55827 49717 31711 33761 44939 7085 28567 39961 48771 20389 18127 22737 64251 21021 46471 60937 55539 38677 61375 4033 19563 4749 43383 61945 51555 14469 5807 18609 17371 64765 60263 18409 12243 54261 23455 41889 ``` ------ ### Explanation Virtual fractions are integers that have the feature that you can multiply them with the denominator and you get the numerator when you store them in a N-Bit integer. For example, you have the 16 bit unsigned integer with the value `0xAAAB` (43691). You can multiply it with 3 and get 1. ``` 3 * 0xAAAB 3 * 0b1010 1010 1010 1011 = 0x20001 0b10 0000 0000 0000 0001 Storing it in a 16 bit variable drops the 1 at bit 17: = 0x0001 0b0000 0000 0000 0001 ``` Or $3 \cdot 43691 = 1 \mod 65536$ This is basically a p-adic/2-adic number with a limited amount of digits. And it is the same as the modular multiplicative inverse with a modulus of 65536 ($2^16$). ------- ### Rules - Print at least 16 bit of the virtual fraction, you can use more. - Print at least the virtual fractions of 1/a for all odd a where `a<98`. - You can print it in any normal base - You can print additional stuff, but it should be clear what parts belong to the virtual fractions and what not. - Your program should finish in less than 1h on a modern PC. ------- ### Ungolfed example ``` #!/usr/bin/env python3 import sys #Calculates the modular multiplicative inverse def imod(a, n): c=1 while c % a: c+=n return c//a #Print the virtual fractions for 16-bit integers n=2**16 for i in range(1,98,2): #For the values 1/1, 1/3, ... 1/97 b = imod(i,n) print("{:>2} * 0x{:>04X} = {:2>} mod 0x{:>04X}".format(i,b,i*b%n,n)) ```