Print the Great Numeric Pyramid
Print or return this exact text:
0
0 0
0 1 0
0 1 1 0
0 1 2 1 0
0 1 2 2 1 0
0 1 2 3 2 1 0
0 1 2 3 3 2 1 0
0 1 2 3 4 3 2 1 0
0 1 2 3 4 4 3 2 1 0
0 1 2 3 4 5 4 3 2 1 0
0 1 2 3 4 5 5 4 3 2 1 0
0 1 2 3 4 5 6 5 4 3 2 1 0
0 1 2 3 4 5 6 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 8 8 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 7 7 7 7 7 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 5 4 3 2 1 0
0 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 4 3 2 1 0
0 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 2 1 0
0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 0
0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
The number represents the distance of the cell from the closest edge.
Trailing whitespace on each line is acceptable. A newline on the last line is optional.
[Python 2], 76 bytes …
4y ago
Canvas, 19 bytes ‾-{{╷¹²- …
4y ago
Japt `-R`, 27 22 bytes …
4y ago
[JavaScript (Node.js)], 137 13 …
4y ago
BQN, 33 bytesSBCS ``` >(⌽( …
3y ago
5 answers
BQN, 33 bytesSBCS
>(⌽(⊑¨55↑+˜⊸+⊔'0'+⌽⊸⌊⊸⌊)¨˜1↓↑)↕28
Minimum of barycentric coordinates placed according to a skew transformation on two of them. So, the min(i,j,27-i-j)
thing pretty much. The result is a character matrix.
The three coordinates are height, distance from left, and distance from right, and always sum to 27. In row i
the height is 27-i
, and the possible values for the other two coordinates range from 0
to i
. So reversing (⌽
) ↕28
gives the height and non-empty Prefixes (↑
) are the horizontal coordinates. The location of a number is the height plus twice the distance from the left. Group (⊔
) places each character at its location, giving a list of lists of characters—always zero or one of them in this case.
>(⌽(⊑¨55↑+˜⊸+⊔'0'+⌽⊸⌊⊸⌊)¨˜1↓↑)↕28
↕28 # Range 0…27
(⌽ 1↓↑) # Function train
↑ # Prefixes of ↕28
1↓ # but not the first (empty) one
⌽ # Reversed range 27…0
˜ # Exchange the order
( )¨ # On each pair (e.g. 𝕨=3…27 and 𝕩=25)
⌽⊸⌊⊸⌊ # Min-with-reverse 𝕨; min with 𝕩
'0'+ # Digit character from number
+˜⊸+ # Locations (2×𝕨)+𝕩
⊔ # Put characters at locations
55↑ # Extend to length 55
⊑¨ # First at each location, or space
> # Merge axes to give a matrix
It's tacit: see trains and Before as usual.
0 comment threads
Python 2, 76 bytes
i=27
while~i:print' '*i+' '.join(`min(i,j,27-i-j)`for j in range(28-i));i-=1
Computes the digit in row i
from the bottom, position j
as min(i,j,27-i-j)
.
For comparison, a bad effect to compute the row numbers arithmetically, made harder by the presence of leading zeroes:
109 bytes
for i in range(28):print" "*(27-i)+" ".join(str(10**min(27-i,i/2)/9*(10**max(2*i-27,-~i/2)/9)*10).zfill(i+1))
0 comment threads
JavaScript (Node.js), 137 136 117 bytes
with(Math)f=n=>(m=(a,b)=>a?m(--a,b)+b(a):[])(28,y=>m(55,x=>x>26-y&x<y+28&(x^y)?min(abs(abs(27-x)-y)/2,27-y):' ')+`
`)
Canvas, 19 bytes
‾-{{╷¹²-m‾-¹-m] *]/
‾-{{╷¹²-m‾-¹-m] *]/ Program, ascii-fied for monospacing
‾- push 28
{ ] for 1…28 (pushing counter & saving in ¹):
{ ] for 1…counter (pushing counter & saving in ²):
╷ decrement the counter
¹²- push ¹-²
m minimum of top 2; min(²-1, ¹-²)
‾-¹- push 28-¹
m minimum of top 2; min(²-1, ¹-², 28-¹)
* separate items with spaces
/ pad lines with spaces to form a space diagonal on the left
0 comment threads